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Topic: turbulent flow

What is turbulent flow?
» Not laminar.
» Unsteady.
» Mixing.
» Multiscale.




Numerical simulation

Credit: turbulence team:
https://www.youtube.com/watch?v=0MO0I2YPVMf8
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Discretization

» Numerical simulation = discretization: w(x,y) — w/(x,y)
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Iscretization
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Solve equations on each point of a fine mesh.
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Filtering

» Problem: multi-scale nature:

— required mesh resolution (often) much too large.

» Engineering solution:

— decompose solution .

— only solve for large scales @.

» How to get w?

— Use filter
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Filtering

» Governing equations:

%;—FJ(zb,w) =vV2w + p(F —w)

V2ih = w.

> Apply filter:
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Filtering

» Governing equations:

O ) = vVt (F )
V) = w.
> Apply filter:
%§+J(f&,w)_uv2w+u(F—w)—r,
V2 = @.

» Sub-Grid Scale (SGS) term 7 appears.



Filtering

» Solving both equations side by side:

W SGS term
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Closing governing equations

» Problem: SGS model is unknown / unclosed 7 = 7(w, 7).

— 7 must be modelled

%—FJ(?ZJ,Q_}) = V%04 pu(F - @) -7,
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Closing governing equations

» Problem: SGS model is unknown / unclosed 7 = 7(w, 7).

— 7 must be modelled
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» Goal: Learn 7 from 256 x 256 simulation.
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Question

» What should we learn from data?

SGS training
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1 There are d global Qol:

1 2 27 27 _
qi(t): () / / fi(wﬂﬁ;xa% t) dXdy’ I:17
27 0 0

2 Replace 7 = r(¢),w) with reduced SGS term r:




Assumptions

Justified if:

» ris ‘just as good’ as 7 for g;.



Assumptions

=t degrees of freedom
M
O(10%) [+ high-res PDE
Justified if:
» ris ‘just as good’ as 7 for g;. O filtered PDE + 1
» Must tie 7; & P; to g; physics.
(1) Qol ODE +f(7°)

e ———————



Compute effect of assumptions

» Derive g; ODEs:

d
dai _ . (0f |
dt _"'+<a@’r>_ +ZTJ<(~)-’ )

j=1

> (AB) = (&) JZ" [27 AB dxdy.

1Ede|ing, W., & Crommelin, D. (2020). Reducing data-driven dynamical subgrid scale models by physical
constraints. Computers & Fluids, 201, 104470.
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Compute effect of assumptions

» Derive g; ODEs:
d
dgi _  (0f |
a T (a@’r> - +ZTJ <a-’ )

> (AB) = (&) JZ" [27 AB dxdy.

d
» Every g; ODE has d SGS terms: remove » ;4
» Orthogonality condition Vt:

of; e -
<&D,Pj>:0 if £

» Separate expansion for P; and small linear solve 1

lEdeIing, W., & Crommelin, D. (2020). Reducing data-driven dynamical subgrid scale models by physical
constraints. Computers & Fluids, 201, 104470.



Extract 7; from data

» Due to orthogonality, g; transport equation becomes:
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» Goal: error g/ (t) — qi(t) =: Ag; is small Vt in training.
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Extract 7; from data

» Due to orthogonality, g; transport equation becomes:
dq,- 8f, af:

=.. — = .. i ==, P
dt + <8(D 9 f + 7-I (9(1) 9 1

» Goal: error g (t) — g;i(t) =: Ag; is small Vt in training.

i

» Assumption: 7; depends upon Ag;.

v

Simply equate source term to Ag;:

fi ,
Ti<§u)7pf>:Aqi/Ti7 7-I:17 I:17"'7d

» Assumes 7; ~ Agq; + imposes linear relaxation towards
reference.

» Ag; is the only data we need.



Example results

» g1 = energy E, go» = enstrophy Z.

----- eddy visc
—— reduced
—-=-- reference
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» ris ‘just as good' as 7 for g;.
— Number of unknowns reduced from 642 to 2.

— Training data size reduced by factor 642 /2.



Example results

» q; = energy E,

g>» = enstrophy Z.

----- eddy visc
—— reduced
—-=-- reference
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Question

» What should we learn from data?

SGS training
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Conclusion

> 7 (or Agi)
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Questions?

Edeling, W., & Crommelin, D. (2020). Reducing data-driven
dynamical subgrid scale models by physical constraints. Computers
& Fluids, 201, 104470.



Offline training

» Now: train ML model on reduced training data.
» Offline training: train e.g. ANN on AE, AZ database.
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Offline training

» Now: train ML model on reduced training data.

» Offline training: train e.g. ANN on AE, AZ database.

Now we have a coupled PDE - ML system:

0w
E—i—J

(’Lﬂ,(:)) = qucD + M(F - (:J) - Tl(EE)Pl - T2(KZ/)P2,

V2 = @.
[AE,AZ] = ANN(Xy,- -+, X7)




Prediction with offline surrogate

» Can become unstable:
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Prediction with offline surrogate

» Can become unstable:
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» Why?: ANN was not trained not to operate in a two-way
coupled modelling environment.

» Other authors reported similar issues.



Online training

» online training while ANN is coupled to PDE.

2Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.

3Sahoo, D. et al, (2017). Online deep learning: Learning deep neural networks on the fly. arXiv preprint
arXiv:1711.03705.



Online training

» online training while ANN is coupled to PDE.

» 1 data point per time step.
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Online training

» online training while ANN is coupled to PDE.

» 1 data point per time step.
» First step: just do back propagation online:
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» More sophisticated methods, See Rasp or Sahoo 2 3.

Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.

3Sahoo, D. et al, (2017). Online deep learning: Learning deep neural networks on the fly. arXiv preprint
arXiv:1711.03705.



Initial results

» MAt = time interval between back propagation steps.



Initial results

» MAt = time interval between back propagation steps.
» M =1, continual online learning:
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» coupled LR - ML model conserves HR energy and enstrophy.
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Initial results

» Thus far, initial conditions were perfect: ¢ = q.

» Can it recover when g™ # q?



Initial results

» Thus far, initial conditions were perfect: ¢ = q.
» Can it recover when g™ # q?
» No SGS term before 10 days:
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» coupled LR - ML model can quickly recover HR Qol.



Next steps

One of the next steps:

» When do we turn online training on / off? Is a UQ question.



Questions?

Edeling, W., & Crommelin, D. (2020). Reducing data-driven
dynamical subgrid scale models by physical constraints. Computers
& Fluids, 201, 104470.



Online training: Rasp (2020)*

Fig from Rasp 2020: HR state is nudged towards LR state.

Online learning — global HR setup

4" HR tendency _ __ >
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» Keeps HR - LR small, helps with online convergence.
» Allows LR to learn ‘what HR would do under similar states’.
4Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network

parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.



Online training: Rasp (2020)*
Fig from Rasp 2020: HR state is nudged towards LR state.

Online learning — global HR setup
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» However: nudging & ML correction is applied to entire state.

» Reduced ML: ML correction is only applied via 7.

4Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.



Reduced online training
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» Modified online (reduced) learning:
— Extract Agq data.
— Only 1 LR step.



Example results

» Are the results spectrally accurate?
» Map 2D wave numbers k = (ki, k2) to 1D k:
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Example results

» Are the results spectrally accurate?
» Map 2D wave numbers k = (ki, k2) to 1D k:

k—%gw/kf+k22<k+%, k:o,1,.--,ceﬂ<ﬁK)
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» No accurate spectra, only explicitly track overall E and Z.



Example results

» However, scale-aware Qol are also possible
» Focus on a specific wave-number range via (spectral) filter 7

— zeros out all wave numbers k < K.
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Example results

» However, scale-aware Qol are also possible

» Focus on a specific wave-number range via (spectral) filter 7

— zeros out all wave numbers k < K.
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» Focus on wave numbers k € [21, 30].
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