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Topic: turbulent flow

What is turbulent flow?

I Not laminar.

I Unsteady.

I Mixing.
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Numerical simulation

Numerical simulation resolving all spatial & temporal scales:

Credit: turbulence team:
https://www.youtube.com/watch?v=OM0l2YPVMf8

./rayleigh_bernard.mp4
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./rayleigh_bernard.mp4


Discretization

I Numerical simulation = discretization: ω(x , y)→ ωh(x , y)
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I Numerical simulation = discretization: ω(x , y)→ ωh(x , y)

Solve equations on each point of a fine mesh.



Filtering

I Problem: multi-scale nature:

→ required mesh resolution (often) much too large.

I Engineering solution:

→ decompose solution ω = ω + ω′ .

→ only solve for large scales ω.

I How to get ω?

→ Use filter ω = Pω
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Filtering

I Governing equations:

∂ω

∂t
+ J(ψ, ω) = ν∇2ω + µ (F − ω)

∇2ψ = ω.

I Apply filter:

∂ω̄

∂t
+ J

(
ψ̄, ω̄

)
= ν∇2ω̄ + µ (F − ω̄)− r ,

∇2ψ̄ = ω̄.

I Sub-Grid Scale (SGS) term r appears.
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Filtering

I Solving both equations side by side:

./omega.mp4
./omega.mp4
./omega.mp4


Closing governing equations

I Problem: SGS model is unknown / unclosed r = r(ω, ψ).

→ r must be modelled

∂ω̄

∂t
+ J

(
ψ̄, ω̄

)
= ν∇2ω̄ + µ (F − ω̄)− r ,

∇2ψ̄ = ω̄.
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Question

I What should we learn from data?



Assumptions

1 There are d global QoI:

qi (t) =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
fi (ω̄, ψ̄; x , y , t) dxdy, i = 1, · · · , d .

2 Replace r = r(ψ, ω) with reduced SGS term r :

r :=
d∑

i=1

τi (t)Pi (x , y , t) ,
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I r is ‘just as good’ as r for qi .

I Must tie τi & Pi to qi physics.



Assumptions

r :=
d∑

i=1

τi (t)Pi (x , y , t) ,

Justified if:

I r is ‘just as good’ as r for qi .

I Must tie τi & Pi to qi physics.



Compute effect of assumptions

I Derive qi ODEs:

dqi
dt

= ...+

(
∂fi
∂ω̄

, r

)
= ...+

d∑
j=1

τj

(
∂fi
∂ω̄

,Pj

)

I (A,B) :=
(

1
2π

)2 ∫ 2π
0

∫ 2π
0 AB dxdy.

I Every qi ODE has d SGS terms: remove
∑d

j=1

I Orthogonality condition ∀t:

(
∂fi
∂ω̄

,Pj

)
= 0 if i 6= j

I Separate expansion for Pj and small linear solve 1.

1
Edeling, W., & Crommelin, D. (2020). Reducing data-driven dynamical subgrid scale models by physical

constraints. Computers & Fluids, 201, 104470.
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Extract τi from data

I Due to orthogonality, qi transport equation becomes:

dqi
dt

= ...+

(
∂fi
∂ω̄

, r

)
= ...+ τi

(
∂fi
∂ω̄

,Pi

)

I Goal: error qrefi (t)− qi (t) =: ∆qi is small ∀t in training.

I Assumption: τi depends upon ∆qi .

I Simply equate source term to ∆qi :

τi

(
∂fi
∂ω

,Pi

)
= ∆qi/Ti , Ti = 1, i = 1, · · · , d

I Assumes τi ∼ ∆qi + imposes linear relaxation towards
reference.

I ∆qi is the only data we need.
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Example results

I q1 = energy E , q2 = enstrophy Z .
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eddy visc
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0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Z 1e 2

I r is ‘just as good’ as r for qi .

→ Number of unknowns reduced from 642 to 2.

→ Training data size reduced by factor 642/2.
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Question

I What should we learn from data?



Conclusion

I τi (or ∆qi )



Questions?

Edeling, W., & Crommelin, D. (2020). Reducing data-driven
dynamical subgrid scale models by physical constraints. Computers
& Fluids, 201, 104470.



Offline training

I Now: train ML model on reduced training data.

I Offline training: train e.g. ANN on ∆E ,∆Z database.

Now we have a coupled PDE - ML system:

∂ω̄

∂t
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(
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)
= ν∇2ω̄ + µ (F − ω̄)− τ1(∆̃E )P1 − τ2(∆̃Z )P2,

∇2ψ̄ = ω̄.

[∆̃E , ∆̃Z ] = ANN(X1, · · · ,X7)



Offline training

I Now: train ML model on reduced training data.

I Offline training: train e.g. ANN on ∆E ,∆Z database.

Now we have a coupled PDE - ML system:

∂ω̄

∂t
+ J

(
ψ̄, ω̄

)
= ν∇2ω̄ + µ (F − ω̄)− τ1(∆̃E )P1 − τ2(∆̃Z )P2,

∇2ψ̄ = ω̄.

[∆̃E , ∆̃Z ] = ANN(X1, · · · ,X7)



Offline training

I Now: train ML model on reduced training data.

I Offline training: train e.g. ANN on ∆E ,∆Z database.

Now we have a coupled PDE - ML system:

∂ω̄

∂t
+ J

(
ψ̄, ω̄

)
= ν∇2ω̄ + µ (F − ω̄)− τ1(∆̃E )P1 − τ2(∆̃Z )P2,

∇2ψ̄ = ω̄.

[∆̃E , ∆̃Z ] = ANN(X1, · · · ,X7)



Prediction with offline surrogate

I Can become unstable:

I Why?: ANN was not trained not to operate in a two-way
coupled modelling environment.

I Other authors reported similar issues.
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Online training

I online training while ANN is coupled to PDE.

I 1 data point per time step.

I First step: just do back propagation online:

I More sophisticated methods, See Rasp or Sahoo 2 3.

2
Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network

parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.

3
Sahoo, D. et al, (2017). Online deep learning: Learning deep neural networks on the fly. arXiv preprint

arXiv:1711.03705.
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I M = 1, continual online learning:

I coupled LR - ML model conserves HR energy and enstrophy.
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Initial results

I M = 20:

I coupled LR - ML model conserves HR energy and enstrophy.



Initial results

I Thus far, initial conditions were perfect: qref = q.

I Can it recover when qref 6= q?

I No SGS term before 10 days:

I coupled LR - ML model can quickly recover HR QoI.



Initial results

I Thus far, initial conditions were perfect: qref = q.

I Can it recover when qref 6= q?

I No SGS term before 10 days:

I coupled LR - ML model can quickly recover HR QoI.



Next steps

One of the next steps:

I When do we turn online training on / off? Is a UQ question.



Questions?

Edeling, W., & Crommelin, D. (2020). Reducing data-driven
dynamical subgrid scale models by physical constraints. Computers
& Fluids, 201, 104470.



Online training: Rasp (2020)4

Fig from Rasp 2020: HR state is nudged towards LR state.

I Keeps HR - LR small, helps with online convergence.

I Allows LR to learn ‘what HR would do under similar states’.

I Applied to Lorenz96.
4

Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.



Online training: Rasp (2020)4

Fig from Rasp 2020: HR state is nudged towards LR state.

I However: nudging & ML correction is applied to entire state.

I Reduced ML: ML correction is only applied via τ .
4

Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network
parameterizations: general algorithms and Lorenz 96 case study (v1. 0). Geoscientific Model Development, 13(5),
2185-2196.



Reduced online training

I Modified online (reduced) learning:

→ Extract ∆q data.

→ Only 1 LR step.



Example results

I Are the results spectrally accurate?

I Map 2D wave numbers k = (k1, k2) to 1D k :
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I No accurate spectra, only explicitly track overall E and Z .
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Example results

I However, scale-aware QoI are also possible

I Focus on a specific wave-number range via (spectral) filter T :

→ zeros out all wave numbers k < K .

τi
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∂ω

,Pi

)
= ∆qi → τi

(
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∂ω
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)
= T (∆qi )
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