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Machine learning

Grand goal: enable AI systems to improve themselves

Practical goal: learn“something” from given data

Recent success: deep learning is extremely good at image
recognition, natural language processing, even the game of Go
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Quantum learning

Quantum computing: 2 minute crash course

YouTube: “Canadian Prime Minister Justin Trudeau schools reporter”

Classically, a bit can be either 0 or 1

Superposition: Qubit can be 0 and 1, each with an amplitude

Example: |ψ〉 = 1√
6
|0〉 −

√
5
6 |1〉

Measurement of |ψ〉: “probability of outcome = amplitude2”

Obtain |0〉 with probability 1/6. |ψ〉 is lost
Obtain |1〉 with probability 5/6. |ψ〉 is lost
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What can quantum computing do for machine learning?

The learner may be quantum

The data can also be quantum

Some examples are known of reduction in time complexity:

k-means clustering
principal component analysis
perceptron learning
recommendation systems
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Probably Approximately Correct (PAC) learning

Basic definitions

Concept class C: collection of Boolean functions on n bits (Known)

Target Concept c : some function c ∈ C (Unknown)

Distribution D : {0, 1}n → [0, 1] (Unknown)

Labeled example for c ∈ C: (x , c(x)) where x ∼ D

Learner is trying to learn c
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Quantum PAC learning

Learner is quantum:

Data is quantum: Quantum example is a superposition∑
x∈{0,1}n

√
D(x) |x , c(x)〉

Measuring this state gives a (x , c(x)) with probability D(x),
so quantum examples are at least as powerful as classical
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Quantum PAC learning

Question

Fewer quantum examples suffice for a quantum learner in the PAC model?
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Does quantum provide an advantage for PAC learning?

Vapnik and Chervonenkis (VC) dimension

Combinatorial parameter that can be defined for every concept class C

Classical bounds

VC dimension characterizes classical sample complexity

Quantum bounds [Arunachalam, de Wolf’16]

VC dimension characterizes quantum sample complexity

Classical sample complexity = Quantum sample complexity
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Conclusion and future work

Take home

Quantum examples do not provide an advantage for PAC learning

Future work

Quantum machine learning is still young! Don’t have convincing
examples where quantum significantly improve machine learning.

Our goal is to find examples where quantum speeds up classical learning.
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