Strengths and Weaknesses of Quantum Maching Learning

Srinivasan Arunachalam

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < で 1/13

• Grand goal: enable AI systems to improve themselves

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing

- Grand goal: enable AI systems to improve themselves
- Practical goal: learn "something" from given data
- Recent success: deep learning is extremely good at image recognition, natural language processing, even the game of Go

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへで 3/13

YouTube: "Canadian Prime Minister Justin Trudeau schools reporter"

• Classically, a bit can be either 0 or 1

- Classically, a bit can be either 0 or 1
- Superposition: Qubit can be 0 and 1, each with an amplitude

- Classically, a bit can be either 0 or 1
- Superposition: Qubit can be 0 and 1, each with an amplitude

• Example:
$$|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle - \sqrt{\frac{5}{6}} |1\rangle$$

- Classically, a bit can be either 0 or 1
- Superposition: Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: "probability of outcome = amplitude²"

- Classically, a bit can be either 0 or 1
- Superposition: Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: "probability of outcome = amplitude²"
 - Obtain $|0\rangle$ with probability 1/6. $|\psi\rangle$ is lost

- Classically, a bit can be either 0 or 1
- Superposition: Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: "probability of outcome = amplitude²"
 - Obtain $|0\rangle$ with probability 1/6. $|\psi\rangle$ is lost
 - Obtain $|1\rangle$ with probability 5/6. $|\psi\rangle$ is lost

Quantum computing: 2 minute crash course

- Classically, a bit can be either 0 or 1
- Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: Obtain $|0\rangle$ w.p. 1/6, $|1\rangle$ w.p. 5/6. $|\psi\rangle$ is lost

What can quantum computing do for machine learning?

Quantum computing: 2 minute crash course

- Classically, a bit can be either 0 or 1
- Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: Obtain $|0\rangle$ w.p. 1/6, $|1\rangle$ w.p. 5/6. $|\psi\rangle$ is lost

What can quantum computing do for machine learning?

• The learner may be quantum

Quantum computing: 2 minute crash course

- Classically, a bit can be either 0 or 1
- Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: Obtain $|0\rangle$ w.p. 1/6, $|1\rangle$ w.p. 5/6. $|\psi\rangle$ is lost

What can quantum computing do for machine learning?

- The learner may be quantum
- The data can also be quantum

Quantum computing: 2 minute crash course

- Classically, a bit can be either 0 or 1
- Qubit can be 0 and 1, each with an amplitude
- Example: $|\psi\rangle = \frac{1}{\sqrt{6}} |0\rangle \sqrt{\frac{5}{6}} |1\rangle$
- Measurement of $|\psi\rangle$: Obtain $|0\rangle$ w.p. 1/6, $|1\rangle$ w.p. 5/6. $|\psi\rangle$ is lost

What can quantum computing do for machine learning?

- The learner may be quantum
- The data can also be quantum
- Some examples are known of reduction in time complexity:
 - k-means clustering
 - principal component analysis
 - perceptron learning
 - recommendation systems

▲□▶ ▲□▶ ▲ ■▶ ▲ ■▶ ■ 釣べで 5/13

Basic definitions

• Concept class C: collection of Boolean functions on *n* bits (Known)

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

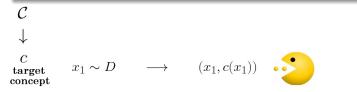
C target concept

С

5/13

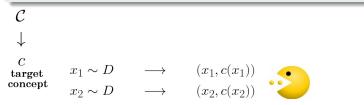
Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$



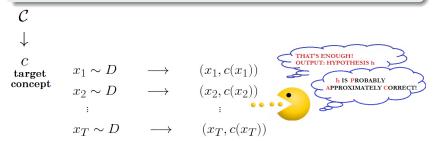
Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$



Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$



Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

Goal of a PAC learner

Using i.i.d. labeled examples, learner for C should output hypothesis h that is *Probably Approximately Correct*, i.e.,

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

Goal of a PAC learner

Using i.i.d. labeled examples, learner for C should output hypothesis h that is *Probably Approximately Correct*, i.e.,

for every D, for every $c \in C$, with high probability, the hypothesis h should approximately look like c

Basic definitions

- Concept class C: collection of Boolean functions on n bits (Known)
- Target Concept c: some function $c \in C$ (Unknown)
- Distribution $D: \{0,1\}^n \rightarrow [0,1]$ (Unknown)
- Labeled example for $c \in C$: (x, c(x)) where $x \sim D$

Goal of a PAC learner

Using i.i.d. labeled examples, learner for C should output hypothesis h that is *Probably Approximately Correct*, i.e.,

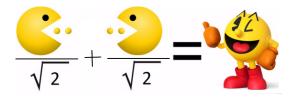
for every D, for every $c \in C$, with high probability, the hypothesis h should approximately look like c

Complexity measure: Sample complexity

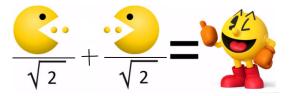
Minimum number of examples seen by the optimal PAC learner for $\ensuremath{\mathcal{C}}$

(中) (部) (言) (言) 言 の(で 10/13)

• Learner is quantum:



• Learner is quantum:



• Data is quantum: Quantum example is a superposition

$$\sum_{x\in\{0,1\}^n}\sqrt{D(x)}\,|x,c(x)\rangle$$

• Learner is quantum:

$$\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

• Data is quantum: Quantum example is a superposition

$$\sum_{x\in\{0,1\}^n}\sqrt{D(x)}\,|x,c(x)\rangle$$

Measuring this state gives a (x, c(x)) with probability D(x),

• Learner is quantum:

$$\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

• Data is quantum: Quantum example is a superposition

$$\sum_{x\in\{0,1\}^n}\sqrt{D(x)}\,|x,c(x)\rangle$$

Measuring this state gives a (x, c(x)) with probability D(x), so quantum examples are at least as powerful as classical

Question

Fewer quantum examples suffice for a quantum learner in the PAC model?

Combinatorial parameter that can be defined for every concept class $\ensuremath{\mathcal{C}}$

Combinatorial parameter that can be defined for every concept class $\ensuremath{\mathcal{C}}$

Classical bounds

VC dimension characterizes classical sample complexity

Combinatorial parameter that can be defined for every concept class $\ensuremath{\mathcal{C}}$

Classical bounds

VC dimension characterizes classical sample complexity

Quantum bounds [Arunachalam, de Wolf'16]

VC dimension characterizes quantum sample complexity

Combinatorial parameter that can be defined for every concept class $\ensuremath{\mathcal{C}}$

Classical bounds

VC dimension characterizes classical sample complexity

Quantum bounds [Arunachalam, de Wolf'16]

VC dimension characterizes quantum sample complexity

Classical sample complexity = Quantum sample complexity

Conclusion and future work

Take home

Quantum examples do not provide an advantage for PAC learning

▲□▶ ▲□▶ ★ 臣▶ ★ 臣▶ 臣 の Q ○ 13/13

Conclusion and future work

Take home

Quantum examples do not provide an advantage for PAC learning

Future work

Quantum machine learning is still young! Don't have convincing examples where quantum significantly improve machine learning.

Conclusion and future work

Take home

Quantum examples do not provide an advantage for PAC learning

Future work

Quantum machine learning is still young! Don't have convincing examples where quantum significantly improve machine learning.

Our goal is to find examples where quantum speeds up classical learning.