The ML Group at CWI + Monte Carlo Tree Search

Wouter M. Koolen

CWI Scientific Meeting, Friday 16th June, 2017
The Machine Learning Group
The Machine Learning Group

Misspecification
Hypothesis Testing
Statistical Learning Theory

Spiking Neural Networks
Deep Reinforcement Learning

Online Learning and Optimisation
Monte Carlo Tree Search
Overview

Questions:
- Which data points to collect?
- How many data points do I need?
- How to draw provable conclusions?

Today:
- Best Arm Identification
- Monte Carlo Tree Search
Clinical Trials Example

[Image]
Clinical Trials Example
Probably Approximately Correct (PAC) Learning

World: drug success rates $\mu = (\mu_1, \ldots, \mu_K)$

Strategy:
- Adaptive sampling rule l_t
- Stopping rule τ
- Recommendation rule \hat{i}
Probably Approximately Correct (PAC) Learning

World: drug success rates $\mu = (\mu_1, \ldots, \mu_K)$

Strategy:
- Adaptive sampling rule I_t
- Stopping rule τ
- Recommendation rule \hat{i}

Definition

A strategy is δ-PAC if for all μ

$$\mathbb{P}_\mu \left(\hat{i} \neq \arg \max_i \mu_i \right) \leq \delta.$$
 Probably Approximately Correct (PAC) Learning

World: drug success rates $\mu = (\mu_1, \ldots, \mu_K)$

Strategy:
- Adaptive sampling rule I_t
- Stopping rule τ
- Recommendation rule \hat{i}

Definition

A strategy is δ-PAC if for all μ

$$\mathbb{P}_\mu \left(\hat{i} \neq \arg \max_i \mu_i \right) \leq \delta.$$

Want: δ-PAC strategy with low sample complexity $\mathbb{E}[\tau]$.
Thompson Sampling

- Assume prior distributions on success rate μ_i of each drug i.
- Each round t
 - Draw a world $\tilde{\mu}_t$ from posteriors
 - Try the best drug for it $l_t = \arg \max_i \tilde{\mu}_{t,i}$
 - Update the posterior

Video.
Information Theoretic Lower Bounds

How many samples are really necessary in a world μ?
Information Theoretic Lower Bounds

How many samples are **really necessary** in a world μ?

Change of measure idea

Consider a world μ' that is close to μ but has a different best drug

$$\arg\max_i \mu_i' \neq \arg\max_i \mu_i$$

Few observations might as well have come from μ' . . .

. . . but then your answer is wrong.

Need **many** observations.
Information Theoretic Lower Bounds

How many samples are really necessary in a world \(\mu \)?

Change of measure idea

Consider a world \(\mu' \) that is close to \(\mu \) but has a different best drug

\[
\arg \max_i \mu'_i \neq \arg \max_i \mu_i
\]

Few observations might as well have come from \(\mu' \) . . .

. . . but then your answer is wrong.

Need many observations.

Theorem (KCG’15)

Any \(\delta \)-PAC algorithm needs

\[
\mathbb{E}[\tau] \geq T^*(\mu) \ln \frac{1}{\delta} \quad \text{where} \quad \frac{1}{T^*(\mu)} = \max_{\mu' \in \Delta} \min_{\mu \in \Delta} \sum_i w_i \text{KL}(\mu_i || \mu'_i)
\]
Outlook

Optimal algorithm now available [GK’16].

- Matching lower bound
- Characterise proportion of draws of each arm

"Top Two" Thompson Sampling gets very close [R’16].

How to answer more challenging questions?
Robust Clinical Trials Example
Robust Clinical Trials Example
Robust Clinical Trials Example
My Project

Goal: develop complete theory of tree search

- Lower bounds
 - Optimal weights are often sparse
 - hints at pruning
 - computational challenges

- Well-developed understanding of depth 2 [GKK’15]

- Upgrading efficient algorithms [THT’14, GKK’15, KK’17]
My Project

Goal: develop complete theory of tree search

- Lower bounds
 - Optimal weights are often sparse
 - hints at pruning
 - computational challenges

- Well-developed understanding of depth 2 [GKK’15]
- Upgrading efficient algorithms [THT’14, GKK’15, KK’17]

Applications beyond robust statistics: