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Misspecification
Hypothesis Testing
Statistical Learning Theory

Spiking Neural Networks
Deep Reinforcement Learning

Online Learning and Optimisation
Monte Carlo Tree Search



Overview

Questions:

Which data points to collect?

How many data points do I need?

How to draw provable conclusions?

Today:

Best Arm Identification

Monte Carlo Tree Search
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Probably Approximately Correct (PAC) Learning

World: drug success rates µ = (µ1, . . . , µK )

Strategy:

Adaptive sampling rule It

Stopping rule τ

Recommendation rule ı̂

Definition

A strategy is δ-PAC if for all µ

Pµ
(
ı̂ 6= arg max

i
µi

)
≤ δ.

Want: δ-PAC strategy with low sample complexity E[τ ].
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Thompson Sampling

Assume prior distributions on success rate µi of each drug i .

Each round t

Draw a world µ̃t from posteriors
Try the best drug for it It = arg maxi µ̃t,i

Update the posterior

Video.



Information Theoretic Lower Bounds

How many samples are really necessary in a world µ?

Change of measure idea

Consider a world µ′ that is close to µ but has a different best drug

arg max
i
µ′i 6= arg max

i
µi

Few observations might as well have come from µ′ . . .
. . . but then your answer is wrong.
Need many observations.

Theorem (KCG’15)

Any δ-PAC algorithm needs

E[τ ] ≥ T ∗(µ) ln
1

δ
where

1

T ∗(µ)
= max

w∈4
min
µ′

∑
i

wi KL(µi‖µ′i )
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Outlook

Optimal algorithm now available [GK’16].

Matching lower bound

Characterise proportion of draws of each arm

“Top Two” Thompson Sampling gets very close [R’16].

How to answer more challenging questions?
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My Project

Goal: develop complete theory of tree search

Lower bounds

Optimal weights are often sparse
hints at pruning
computational challenges

Well-developed understanding of depth 2 [GKK’15]

Upgrading efficient algorithms [THT’14, GKK’15, KK’17]

Applications beyond robust statistics:
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