# The ML Group at CWI + Monte Carlo Tree Search





CWI Scientific Meeting, Friday 16<sup>th</sup> June, 2017

# The Machine Learning Group



# The Machine Learning Group





Misspecification Hypothesis Testing Statistical Learning Theory



Spiking Neural Networks Deep Reinforcement Learning



Online Learning and Optimisation Monte Carlo Tree Search

#### Overview



Questions:

- Which data points to collect?
- How many data points do I need?
- How to draw provable conclusions?

Today:

- Best Arm Identification
- Monte Carlo Tree Search



# Probably Approximately Correct (PAC) Learning

World: drug success rates  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ 

Strategy:

- Adaptive sampling rule  $I_t$
- Stopping rule  $\tau$
- Recommendation rule  $\hat{\imath}$

# Probably Approximately Correct (PAC) Learning

World: drug success rates  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ 

Strategy:

- Adaptive sampling rule  $I_t$
- Stopping rule  $\tau$
- Recommendation rule  $\hat{\imath}$

#### Definition

A strategy is  $\delta\text{-}\mathbf{PAC}$  if for all  $\pmb{\mu}$ 

$$\mathbb{P}_{\boldsymbol{\mu}}\left(\hat{\imath}\neq\arg\max_{i}\mu_{i}\right) \leq \delta.$$

# Probably Approximately Correct (PAC) Learning

World: drug success rates  $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$ 

Strategy:

- Adaptive sampling rule *I<sub>t</sub>*
- Stopping rule  $\tau$
- Recommendation rule  $\hat{\imath}$

#### Definition

A strategy is  $\delta\text{-}\mathbf{PAC}$  if for all  $\pmb{\mu}$ 

$$\mathbb{P}_{\boldsymbol{\mu}}\left(\hat{\imath} \neq \arg\max_{i} \mu_{i}\right) \leq \delta.$$

Want:  $\delta$ -PAC strategy with low sample complexity  $\mathbb{E}[\tau]$ .

# Thompson Sampling

- Assume prior distributions on success rate  $\mu_i$  of each drug *i*.
- Each round t
  - Draw a world  $ilde{oldsymbol{\mu}}_t$  from posteriors
  - Try the best drug for it  $I_t = \arg \max_i \tilde{\mu}_{t,i}$
  - Update the posterior

Video.

## Information Theoretic Lower Bounds

How many samples are **really necessary** in a world  $\mu$ ?

#### Information Theoretic Lower Bounds

How many samples are **really necessary** in a world  $\mu$ ?

Change of measure idea

Consider a world  $\mu'$  that is close to  $\mu$  but has a different best drug

$$\arg\max_{i}\mu'_{i} \neq \arg\max_{i}\mu_{i}$$

Few observations might as well have come from  $\mu' \ldots$  ... but then your answer is wrong. Need **many** observations.

#### Information Theoretic Lower Bounds

How many samples are **really necessary** in a world  $\mu$ ?

#### Change of measure idea

Consider a world  $\mu'$  that is close to  $\mu$  but has a different best drug

$$\arg\max_{i}\mu'_{i} \neq \arg\max_{i}\mu_{i}$$

**Few** observations might as well have come from  $\mu' \dots$ ... but then your answer is wrong. Need **many** observations.

#### Theorem (KCG'15)

Any  $\delta$ -PAC algorithm needs

$$\mathbb{E}[\tau] \geq T^*(\boldsymbol{\mu}) \ln \frac{1}{\delta} \quad \textit{where} \quad \frac{1}{T^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \bigtriangleup} \min_{\boldsymbol{\mu}'} \sum_i w_i \operatorname{\mathsf{KL}}(\mu_i \| \mu_i')$$

#### Outlook

Optimal algorithm now available [GK'16].

- Matching lower bound
- Characterise proportion of draws of each arm

"Top Two" Thompson Sampling gets very close [R'16].

How to answer more challenging questions?

# Robust Clinical Trials Example



# Robust Clinical Trials Example



# Robust Clinical Trials Example



# My Project

Goal: develop complete theory of tree search

- Lower bounds
  - Optimal weights are often sparse
  - hints at pruning
  - computational challenges
- Well-developed understanding of depth 2 [GKK'15]
- Upgrading efficient algorithms [THT'14, GKK'15, KK'17]

# My Project

Goal: develop complete theory of tree search

- Lower bounds
  - Optimal weights are often sparse
  - hints at pruning
  - computational challenges
- Well-developed understanding of depth 2 [GKK'15]
- Upgrading efficient algorithms [THT'14, GKK'15, KK'17]

Applications beyond robust statistics:

