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Problem setting
e Radiotherapy important in cancer treatment
+ Improves survival rates

- Adverse effects
(damage to healthy tissue)

Image from www.europeanpharmaceuticalreview.com



Problem setting

e Treatment planning:
Trade-off delivery enough tumor irradiation
spare nearby organs-at-risk

E.g., spare salivary glands

Image from www.medgadget.com



Our problem

e Provide doctors with info on
radiation dose <-> adverse effects relationship

e To better understand trade-off & improve treatments



Our problem

Provide doctors with info on
radiation dose <-> adverse effects relationship

To better understand trade-off & improve treatments

We consider |ate adverse effects: happen decades after treatment
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What we need: 3D dose distribution
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Dose reconstruction

Select Get dose estimation by
Past features representative treatment simulation
PHANTOM on phantom



What we are doing

e Two approaches, using Machine Learning



Approach 1:
Automatic ML-powered phantom construction

e Machine-learn models linking past features (2D) w/ 3D anatomical metrics

e Use 3D metrics to generate phantom



Approach 1:
Automatic ML-powered phantom construction

e Machine-learn models linking past features (2D) w/ 3D anatomical metrics
e Use 3D metrics to generate phantom
e How to have examples of 2D-to-3D relationship?

a. Take 3D patient imaging (CT scan)
b. Transform into 2D (historical-like radiograph), extract past features

e Train associations between 2D features and 3D metrics



Approach 1:
Automatic ML-powered phantom construction
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Approach 1:
Automatic ML-powered phantom construction
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Approach 2

e Approach 2) Machine-learn a link between past features (2D) and ...



Approach 2: look back at dose reconstruction

e Essentially, this:

Select Get dose by
Past features representative treatment simulation
PHANTOM on phantom



Approach 2: look back at dose reconstruction

e Essentially, this:

Get dose by
treatment simulation
on phantom

Past features rtual representcN

PHANTOM



Approach 2: look back at dose reconstruction

e Essentially, this:

Estimate dose
(include plan info in
features for learning)

Past features rtual representcN

PHANTOM

Machine Learn



Ongoing work

e Validation of our approaches: is the dose reconstruction acceptable?

e Comparison with 2 institutes in US that perform phantom-based dose
reconstruction

Thank you!



