

Uncertainty quantification for fluid dynamics applications

Benjamin Sanderse, Laurent van den Bos, Yous van Halder, Sirshendu Misra, Julia Klinkert

Variability in sloshing impacts

Variability in sloshing impacts

Improved prediction of multiphase flow in pipelines

Uncertainty reduction in offshore wind

UQ and fluid dynamics

- PDEs with random coefficients
- Stochastic PDEs

Uncertainty Quantification

Propagation – a forward problem

Uncertainty Quantification

Calibration – a backward problem

random samples q_i with equal weights

Challenge:

Fluid dynamic models feature very **expensive models** *f*(*Q*)

Our approach:

Approximate full model with **surrogate** models

- Radial basis functions As
- Gaussian processes
- Neural networks

_

- Asymptotics
- Modal expansions

Polynomial response surface

- Polynomial Chaos Expansion
- Fourier expansion in random space:

$$Y = f(q) \approx f_{\text{PCE}}(q) = \sum_{i=0}^{N} \hat{f}_i \phi_i(q)$$

• Use polynomials $\phi(q)$ orthogonal with respect to PDF $\rho(q)$:

$$\int \phi_i(q)\phi_j(q)\rho_Q(q)\mathrm{d}q = \begin{cases} \gamma_i & i=j,\\ 0 & i\neq j. \end{cases}$$

Polynomial Chaos Expansion

Example orthogonality polynomials and PDF

Polynomial Chaos Expansion

Fourier expansion in random space:

$$Y = f(q) \approx f_{\text{PCE}}(q) = \sum_{i=0}^{N} \hat{f}_i \phi_i(q)$$

Coefficients follow from

$$\hat{f}_i = \frac{1}{\gamma_i} \int f(q) \phi_i(q) \rho_Q(q) \mathrm{d}q$$

Approximate with quadrature rules

$$\int f(q)\phi_i(q)\rho_Q(q)\mathrm{d}q \approx \sum_{k=1}^K f(q_k)\phi_i(q_k)w_k$$

Model sampling at nodes q_k

Polynomial Chaos Expansion

deterministic samples *q_i*

analytic output $f_{PCE}(q)$

$$\mu_Y = \hat{f}_0$$
$$\sigma_Y = \sum_{i=1} \hat{f}_i^2$$

Monte Carlo

Model sampling

- Random space is **high-dimensional**: curse of dimensionality $N = M^d$
- Where to sample the model?
- Use model behavior to adaptively select nodes

Sloshing

Sloshing

Adaptive sampling for sloshing

Adaptive sampling for sloshing

Physics-based surrogate model

Full model

Physics-based approach

Bayesian model calibration

- Bayesian approach: elegant, but expensive
- Surrogate models to reduce computational cost

Calibration of turbulence model parameters

Bayesian model calibration

Bayesian model calibration

- Calibrated model constants with probability distribution
- Quantified uncertainty for predictive capability

Summary

- Surrogate models make UQ computable for fluid dynamics problems:
 - Propagation
 - Calibration

Interested? Some further reading

