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Variability in sloshing impacts



Variability in sloshing impacts



Improved prediction of multiphase flow in pipelines



Uncertainty reduction in offshore wind



UQ and fluid dynamics

q ⇠ N (µ,�2)

Fluid dynamics

Partial differential equations 
(Navier-Stokes)
Conservation laws
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Random variables
Probability density functions
Stochastic processes

§ PDEs with random coefficients
§ Stochastic PDEs

Uncertainties



§ Propagation – a forward problem

Uncertainty Quantification

§ Complex (PDEs)
§ Expensive (CFD)
§ Non-intrusive

§ Input parameters
§ Model parameters
§ Boundary conditions
§ Geometry

§ Quantity of interest



Uncertainty Quantification

§ Calibration – a backward problem



Monte Carlo

random samples qi with equal weights

µY = E[Y ] ⇡ 1

N
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Challenge:
Fluid dynamic models feature very expensive models  f(Q)

Our approach:
Approximate full model with surrogate models 

Monte Carlo?



Surrogate models

Full model response

M. Sinsbeck, 
PhD thesis 2016

Y = f(Q)

Response surface

‘mathematics-based’:
- Polynomials
- Radial basis functions
- Gaussian processes
- Neural networks

Low-fidelity model

‘physics-based’:
- Averaging
- Asymptotics
- Modal expansions



§ Polynomial Chaos Expansion
§ Fourier expansion in random space:

§ Use polynomials           orthogonal with respect to PDF         :

Polynomial response surface
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Polynomial Chaos Expansion

§ Example orthogonality polynomials and PDF
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Gaussian random variable Hermite polynomials



§ Fourier expansion in random space:

§ Coefficients follow from

§ Approximate with quadrature rules

Polynomial Chaos Expansion

Y = f(q) ⇡ fPCE(q) =
NX
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Model sampling at nodes qk



Polynomial Chaos Expansion

deterministic samples qi

analytic output fPCE(q)

µY = f̂0

�Y =
X

i=1

f̂2
i

Monte Carlo 



Model sampling
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Sparse grid

N = Md- Random space is high-dimensional: curse of dimensionality
- Where to sample the model?
- Use model behavior to adaptively select nodes



Sloshing



Sloshing



Adaptive sampling for sloshing



Adaptive sampling for sloshing



Full model

Physics-based surrogate model

Low-fidelity model
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Averaging

Closure problem!



Physics-based approach



Bayesian model calibration

§ Bayesian approach: elegant, but expensive
§ Surrogate models to reduce computational cost

p(parameters|data)| {z }
posterior

/ p(data|parameters)| {z }
likelihood

p(parameters)| {z }
prior



Calibration of turbulence model parameters

–, M

Cp?

Flow over airfoil

Reynolds-averaged 
Navier-Stokes equations
7 closure parameters

Example resultsExperimental data

Can we calibrate these parameters
given the experimental data?



Bayesian model calibration



Bayesian model calibration

§ Calibrated model constants with probability distribution
§ Quantified uncertainty for predictive capability



Summary 

§ Surrogate models make UQ computable for fluid dynamics 
problems:
§ Propagation 
§ Calibration

Response surface Low-fidelity model



Interested? Some further reading


