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Linear Programming

Linear Programming (LP): linear constraints & linear objective with
continuous variables.

max cT x
subject to Ax ≤ b, x ∈ Rn (A has m rows, n columns)

D. Dadush, N. Hähnle Shadow Simplex Scientific Meeting 4 / 24



Linear Programming

Linear Programming (LP): linear constraints & linear objective with
continuous variables.

max cT x
subject to Ax ≤ b, x ∈ Rn (A has m rows, n columns)

P

c
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Linear Programming

Linear Programming (LP): linear constraints & linear objective with
continuous variables.

max cT x
subject to Ax ≤ b, x ∈ Rn (A has m rows, n columns)

P

c

Amazingly versatile modeling language.
Generally provides a “relaxed” view of a desired optimization
problem, but can be solved in polynomial time!
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Mixed Integer Programming

Mixed Integer Programming (MIP): models both continuous and
discrete choices.

max cT x + dT y
subject to Ax + By ≤ b, x ∈ Rn1 , y ∈ Zn2
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Mixed Integer Programming

Mixed Integer Programming (MIP): models both continuous and
discrete choices.

max cT x + dT y
subject to Ax + By ≤ b, x ∈ Rn1 , y ∈ Zn2

One of the most successful modeling language for many real
world applications. While instances can be extremely hard to
solve (MIP is NP-hard), many practical instances are not.
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Mixed Integer Programming

Mixed Integer Programming (MIP): models both continuous and
discrete choices.

max cT x + dT y
subject to Ax + By ≤ b, x ∈ Rn1 , y ∈ Zn2

Many sophisticated software packages exist for these models
(CPLEX, Gurobi, etc.). MIP solving is now considered a mature
and practical technology.
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Sample Applications

Routing delivery / pickup trucks for customers.
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Sample Applications

Optimizing supply chain logistics.
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Standard Framework for Solving MIPs

Relax integrality of the variables.
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Relax integrality of the variables.

max cT x + dT y
subject to Ax + By ≤ b, x ∈ Rn1 , y ∈ Rn2

Solve the LP.
Add extra constraints to tighten the LP or “guess” the values of
some of the integer variables. Repeat.
Need to solve a lot of LPs quickly.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

Simplex Method: move from vertex to vertex along the graph of P
until the optimal solution is found.

P

v1
c v2
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Question
Why is simplex so popular?

“Easy” to reoptimize when adding an extra constraint or variable.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Question
Why is simplex so popular?

“Easy” to reoptimize when adding an extra constraint or variable.
Vertex solutions are often “nice” (e.g. sparse, easy to interpret).
Simplex pivots implementable using “simple” linear algebra. Worst
case O(mn) time per iteration.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Simplex lower bounds:
Klee-Minty (1972): designed “deformed cubes”, providing worst
case examples for many pivot rules.
Friedmann et al. (2011): systematically designed bad examples
using Markov decision processes.
In these examples, the pivot rule is tricked into taking an
(sub)exponentially long path, even though short paths exists.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Simplex upper bounds:
Kalai (1992), Matousek-Sharir-Welzl (1992-96): Random facet
rule requires 2O(

√
n log m) pivots on expectation.
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Linear Programming via the Simplex Method

max cT x
subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Polynomial bounds for random or smoothed linear programs:
Borgwardt (82), Smale (83), Adler (83), Todd (83), Haimovich (83), Meggido (86),
Adler-Shamir-Karp (86,87), Spielman-Teng (01,04), Spielman-Deshpande (05),
Spielman-Kelner (06), Vershynin (06)
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subject to Ax ≤ b, x ∈ Rn

A has n columns, m rows.

P

Problem
No known pivot rule is proven to converge in polynomial time!!!

Polynomial bounds for random or smoothed linear programs:
Borgwardt (82), Smale (83), Adler (83), Todd (83), Haimovich (83), Meggido (86),
Adler-Shamir-Karp (86,87), Spielman-Teng (01,04), Spielman-Deshpande (05),
Spielman-Kelner (06), Vershynin (06)

These works rely on the shadow simplex method.
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Linear Programming and the Hirsch Conjecture

P = {x ∈ Rn : Ax ≤ b},
A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Besides the computational efficiency of the simplex method, an even
more basic question is not understood:

Question
How can we bound the length of paths on the graph of P? I.e. how to
bound the diameter of P?
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A ∈ Rm×n

P

P lives in Rn (ambient dimension is n) and has m constraints.

Conjecture (Polynomial Hirsch Conjecture)
The diameter of P is bounded by a polynomial in the dimension n and
number of constraints m.

Diameter upper bounds:
Barnette, Larman (1974): 1

32n−2(m− n + 5
2 ).

Kalai, Kleitman (1992), Todd (2014): (m− n)log n.
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Well-Conditioned Polytopes

P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n

Definition (Bounded Subdeterminants)
An integer matrix A has subdeterminants bounded by ∆ if every square
submatrix B of A satisfies | det(B)| ≤ ∆.

Diameter Bound:
I Bonifas, Di Summa, Eisenbrand, Hähnle, Niemeier (2012):

non-constructive O(n3.5∆2 log n∆) bound.
I Brunsch,Röglin (2013): shadow simplex method finds paths of

length O(mn3∆4).
Optimization:

I Dyer, Frieze (1994): ∆ = 1 (totally unimodular)
random walk simplex uses O(m16n6 log(mn)3) pivots.

I Eisenbrand, Vempala (2014):
random walk simplex uses O(mpoly(n,∆)) pivots.
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Faster Shadow Simplex

P = {x ∈ Rn : Ax ≤ b}, A ∈ Zm×n

Subdeterminants of A bounded by ∆.

Theorem (D., Hähnle 2014+)

Diameter is bounded by O(n3∆2 ln(n∆)).
Can solve LP using O(n5∆2 ln(n∆)) pivots on expectation.

Based on a new analysis and variant of the shadow simplex method.
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τ-wide Polyhedra
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P has subdeterminant bound ∆ ⇒ P is τ-wide for τ = 1/(n∆)2.
Normal cone at v is all objectives maximized at v .
Normal fan is the set of normal cones.
P is τ-wide if each normal cone contains a unit ball of radius τ
centered on the unit sphere.
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τ-wide Polyhedra
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In 2 dimensions all interior angles are at most π − 2τ, i.e. sharp.

Theorem (D.-Hähnle 2014)
If P is τ-wide then the diameter of P is bounded by O(n/τ ln(1/τ)).
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D. Dadush, N. Hähnle Shadow Simplex Scientific Meeting 17 / 24



Outline

1 Introduction
Linear Programming and its Applications
The Simplex Method
Results

2 The Shadow Simplex Method
Pivot Rule
3-Step Shadow Simplex Path

3 Conclusions
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Pivot Rule
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Move from v1 to v3 by following [c,d ] through the normal fan.
Pivot steps correspond to crossing facets of the normal fan.
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D. Dadush, N. Hähnle Shadow Simplex Scientific Meeting 19 / 24



Pivot Rule

P

v1

v3

v2

v4

c

d

c

d

d1
d2

d1
d2

Move from v1 to v3 by following [c,d ] through the normal fan.
Pivot steps correspond to crossing facets of the normal fan.
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Move from v1 to v3 by following [c,d ] through the normal fan.
Pivot steps correspond to crossing facets of the normal fan.

Question
How can we bound the number of intersections with the normal fan?
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Question
How can we bound the number of intersections with the normal fan?

Polynomial bounds for random and smoothed linear programs:
Borgwardt (82), Smale (83), Adler (83), Todd (83), Haimovich (83), Meggido (86),
Adler-Shamir-Karp (86,87), Spielman-Teng (01,04), Spielman-Deshpande (05),
Spielman-Kelner (06), Vershynin (06)
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3-Step Shadow Simplex Path

We use a 3-step shadow simplex path:

c
(a)−→ c + X

(b)−→ d + X
(c)−→ d

where X is distributed proportional to e−‖x‖.

c is an objective maximized at the starting vertex.
d is the LP objective function.

Theorem (D.-Hähnle 2014)
Assume P is an n-dimensional τ-wide polytope.

Phase (b). Expected number of crossings of [c + X ,d + X ] with
normal fan is O(‖c − d‖/τ).
Phase (a+c). Expected number of crossings of [c + αX , c + X ]
(same for d), for α ∈ (0,1], with normal fan is O(n/τ ln(1/α)).

Main ingredient for all our results.
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Phase (a+c). Expected number of crossings of [c + αX , c + X ]
(same for d), for α ∈ (0,1], with normal fan is O(n/τ ln(1/α)).

Main ingredient for all our results.
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Navigation over the Voronoi Graph
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Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
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Navigation over the Voronoi Graph

x

y
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Z + t
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Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
Can reduce CVP to efficient navigation over the Voronoi graph
(Sommer,Feder,Shalvi 09; Micciancio,Voulgaris 10-13).
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Navigation over the Voronoi Graph

x

y
t

Z + t

Z

Figure: Randomized Straight Line algorithm

Closest Vector Problem (CVP): Find closest lattice vector y to t .
Can move between “nearby” lattice points using a polynomial
number of steps (Bonifas, D. 14).
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Summary

New and simpler analysis and variant of the Shadow Simplex
method.
Improved diameter bounds and simplex algorithm for curved
polyhedra.

Thank you!
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