

News from the Ground Floor

Explorative Imaging at the FleX-Ray Laboratory

Sophia Bethany Coban

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.

CWI Scientific Meeting

26 June 2020

Preamble: Quick introduction to imaging

Explorative imaging in a flexible setting

The FleX-Ray Laboratory

Latest imaging news from the ground floor

Towards a smarter future?

Preamble: Quick introduction to imaging

An inverse problem is

- a problem that fails one or more of **Hadamard's conditions** for a well-posed problem:
 - 1. A solution to the problem must exist;
 - 2. The solution to the problem must be unique;
 - 3. The solution depends continuously on the data.

Considering the continuum and discrete CT problems separately...

The continuum case:

Can have a unique solution given the *right data*, but the problem can still be unstable in a reasonable norm, meaning a severely ill-posed problem.

The discrete case:

Cannot produce a unique solution due the finite set of data yet with infinite number of unknowns, but it can be stable and therefore **mildly ill-conditioned**.

Small changes in the measured data can lead to big changes in the reconstructed image.

 \mathcal{Z}

3D illustration of a simple apparatus set up for cone beam.

Detector

Source

Object

2D (xz-)view of a single ray from a point source with the intensities I0 at the source and I at the detector.

Detector

Consider a single point, dx_L on a monochromatic X-ray beam...

L(x), the length of the X-ray beam travelling through the object, dI the intensity value at the point dx_L . At this point dx_L , the beam has lost some intensity proportional to its initial intensity, I_0 ,

$$dI = -\mu(x)I_0a$$

Here, $\mu(x)$ is the attenuation coefficient, i.e. the rate at which the **photons** are absorbed (or scattered).

 $dx_{I_{\prime}}$.

This implies

$$I = I_0 \mathrm{e}^{-\int_{L(x)} \mu(x)}$$

In physical terms, this describes that the monochromatic beam is attenuated exponentially as it travels through an object.

This is commonly referred to as the **Beer-Lambert Law**.

 $) dx_L$

Monochromatic beam is

- an X-ray beam with a single energy (also referred to as a white beam),
- expensive to produce
- need synchrotrons
- not available in a laboratory setting!

Therefore we have to consider X-rays with multiple energies, i.e. polychromatic beams.

Since we now depend on varying energy levels as well as the location in the object, the CT model becomes

$$I = \int_{L(x)} I_0(E) e^{-\int_{L(x)} I_0(x)}$$

Integrating over
all energy levels
Initial intensity on
now depends of

Initial intensity of beam now depends on energy of the beam as it leaves the source

 $\mu(x,E)\,dx_L\,\,dE.$

Attenuation of an object also depends on the energinal of beam at that location

Since we now depend on varying energy levels as well as the location in the object, the CT model becomes

$$I = \int_{L(x)} I_0(E) e^{-\int_{L(x)}}$$

Mathematically, the goal is to recover the attenuation coefficient from the information at detectors.

 $\mu(x,E) dx_L dE$

Explorative imaging in a flexible setting

The FleX-Ray Laboratory

Introducing FleX-Ray Laboratory

Ten programmable motors in the full flexible setup.

Introducing FleX-Ray Laboratory

Real-time data streaming and almost-instantaneous reconstructions.

Introducing FleX-Ray Laboratory

Ability to incorporate additional components: Spectral detector.

Sample Stage

Vertical (Source) Transversal (Source)

Horizontal (Piezo) Transversal (Sample) Horizontal (Sample) Rotational (Sample)

Detector

Vertical (Detector) Horizontal (Detector) Transversal (Detector)

Circular

Helical

Zoom in

Tile in detector plane

Latest imaging news from the ground floor

Recovering the name of an author

The dating of chapters and the consistent handwriting suggests a single author, produced between 1661 and 1664.

18 signatures, all crossed out.

Two different iron gall inks.

Differing chemical compositions: second is from late 18th to early 20th century.

Original ink contains more metal, coincides with the usage in 17th century.

Uncovering writings in old manuscripts is done using X-ray florescence or phase contrast in synchrotrons.

In contrast we have two layers of ink, and a laboratory X-ray absorption imaging...

Experimental Plan

Only allowed to move the tube and detector up/down or sideways.

Experimental Plan

Due to sample fragility, take 2D radiographs of 18 locations.

Collect high quality radiographs at various energy levels and exposure.

Correlate corresponding letters to recover full name of author.

A fun inverse problem in itself: Relies heavily on quality of input data...

- Automate the image processing, extract information from processed radiographs.

False positives?

No signatures

Results

Mon or Rom

Cor or Coe Lea or Lee

Leendert Cornelisse Romeijn

The national archives contain a certain individual with the name Leendert Romeijn. Leendert lived in Rotterdam and had 6 children. One of his sons was named Cornelis Romeijn! Leendert was a trader.

Expert feedback invaluable. Could automation have been viable in the absence of expert feedback? Could a machine learn to rule out a false positive?

Adapting geometry during acquisition

Tablet is placed at the bottom of a clear cylindrical plastic container. Gel decanted prior to data acquisition.

Rotation is 200 deg/s with 150 projections per 360 degrees with 12ms per projection: a total of 166 rotations, i.e. 5 minutes acquisition time.

Each projection is binned but not cropped, (size 487px x 385px). The spatial resolution at the beginning of the experiment is 193μ m, at the zoom it is 76μ m.

Action camera mounted on top of the source, tilted downwards to capture the entire setup.

Results

Towards a smarter future?

The future of CT acquisition experiments

What can we teach the system?

Can we teach the system to make simple decisions?

Can we teach the system to make *difficult* decisions?

Should AI be involved fully in the process and operator made redundant?

Thank you for your attention!

Coban, S.B.; Lucka, F.; Palenstijn, W.J.; Van Loo, D.; Batenburg, K.J. Explorative Imaging and Its Implementation at the FleX-ray Laboratory. J. Imaging 2020, 6, 18.

Buurlage, J.W.; Kohr, H.; Palenstijn, W.J.; Batenburg, K.J. Real-time quasi-3D tomographic reconstruction. Meas. Sci. Technol. 2018, 29, 064005.

van Aarle, W.; Palenstijn, W.J.; Beenhouwer, J.D.; Altantzis, T.; Bals, S.; Batenburg, K. Sijbers, J. The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 2015, 157, 35-47.

Coban, S.; Lucka, F.; Palenstijn, W. Dynamic 3D X-ray Micro-CT Data of A Tablet Dissolution in A Water-Based Gel With Dynamic Changes in the Scanning Geometry. Available online: https://doi.org/10.5281/zenodo.3675371

Search Q Upload

Computational Imaging -- Centrum Wiskunde & Informatica

Recent uploads

Search Computational Imaging -- Centrum Wiskunde & Informatica

April 28, 2020 (v1.1.0) Software Open Access

RECAST3D

Buurlage, Jan-Willem; Palenstijn, Willem Jan; Hendriksen, Allard; Pelt, Daan; Graas, Adri

Full-stack implementation of a real-time tomographic reconstruction and visualization Documentation

Uploaded on April 28, 2020

April 23, 2020 (v1) Dataset Open Access

High-resolution cone-beam scan of twenty-one walnuts with two d

Lagerwerf, Marinus Jan; Coban, Sophia Bethany; Batenburg, K. Joost;

We release tomographic scans of 21 walnuts with two levels of radiation dosage for ne data analysis, reconstruction or segmentation methods. The dataset collected with hig "good" dataset; and the other as the "n

Uploaded on April 23, 2020

https://zenodo.o

April 10, 2020 (v1) Dataset Open Access

A five-tile tomographic micro-CT dataset of the oak sculpture "Holy lantern" - part 2 of 2

D Francien G. Bossema; Alexander Kostenko; D Sophia Bethany Coban;

	🔔 New upload
Q	Community
View	
riaan; Kohr, Holger; n pipeline. Source code	CWI
	COMPUTATIONAL
View dosage levels	
noise-level comparative studies in igher dosage is referred to as the	Computational Imaging – Centrum Wiskunde & Informatica
	Welcome to the Zenodo community for the Computational Imaging at Centrum Wiskunde &
rg/communities/ci	-CWI/
View View	This community, created and maintained by the CI- CWI, is a collection of the research materials produced by its members.
	Here, you can find various dataset collected by our

