
1/ 9

Efficient Algorithms for

Graph Sparsification

Ronald de Wolf

Joint with Simon Apers (INRIA & CWI)

2/ 9

Graphs

I Big part of discrete mathematics

I Graphs model many important phenomena:

I Logistics

I Internet

I Social networks

I Sparse graphs are better than dense graphs:

I Need less space to store
I Need less time to operate on

3/ 9

Sparsifiers

I Graph G = (V ,E ,w) with vertex set V = [n], m = |E | edges,
weight function w : E → R≥0. Given as adjacency list

I Laplacian of graph G : LG =
∑
e∈E

w(e)Le

Le=(i ,j) = (ei − ej)(ei − ej)
T =



. . . · · ·
1 0 −1
0 0 0
−1 0 1

· · · . . .


I An ε-spectral sparsifier of G is a graph H = (V ,E ′ ⊆ E ,w ′)

such that
for all x ∈ Rn : xTLGx = (1± ε)xTLHx

So sparsification approximately preserves all quadratic forms
of the Laplacian. NB: reweighting is essential here

4/ 9

Sparsifiers preserve all cuts in the graph

I An ε-spectral sparsifier of G = (V ,E ,w) is a graph
H = (V ,E ′,w ′) s.t. for all x ∈ Rn : xTLGx = (1± ε)xTLHx

I Special case: consider x ∈ {0, 1}n, with support S .
xTLex = 1 if edge e is cut, 0 otherwise. Hence

xTLGx =
∑
e

w(e)xTLex =
∑

e∈S×Sc

w(e)

is the value of the cut S , Sc . So H preserves all cuts of G !

5/ 9

Good sparsifiers exist & are cheap to find!

An ε-spectral sparsifier of G = (V ,E ,w) is a graph
H = (V ,E ′,w ′) s.t. for all x ∈ Rn : xTLGx = (1± ε)xTLHx

I How sparse can we make H?

|E ′| ≈ n/ε2 edges are necessary and sufficient

I How quickly can we find such an H?

Near-linear time in the input length!Õ(m) time

(input given as adjacency list for each vertex)

I Many applications

Gödel Prize 2015 for
Dan Spielman and Shang-Hua Teng

6/ 9

Applications (non-exhaustive list)

General idea to operate efficiently on graphs: first sparsify input
graph G , then run your best algorithm on the sparsifier H

I Approximating min-cut in near-linear time

I Approximating max-cut up to the Goeman-Williamson ratio of
0.878 in near-linear time (better approximation is hard)

I Partitioning a graph: find min-cut and partition recursively

I Laplacian solving: given symmetric, diagonally-dominant
n × n matrix L with m nonzero entries, and b ∈ Rn,
find x s.t. Lx = b. Can solve this approximately in time Õ(m):
massage L to Laplacian LG of a graph, sparsify, solve LHx = b

Remarkable: few other problems solvable in near-linear time

7/ 9

How to efficiently compute a sparsifier

I Long line of work. We’ll describe approach due to
Koutis-Xu’16, which repeatedly cuts number of edges in half

I Some edges are more important than others:

I Idea: identify most important edges by finding O(log(n)2/ε2)
disjoint spanners of G (preserve distances, linear-time comp.)
Keep their edges in the sparsifier, plus a random sample of
half of remaining edges reweighted by factor 2.
This gives a sparsifier with ≈ m/2 edges.

I Iterate this log times to reduce m to Õ(n/ε2) edges

8/ 9

Faster quantum algorithm for sparsification

I Apers & dW’19: quantum algorithm to find ε-spectral
sparsifier H in sublinear time Õ(

√
mn/ε) (this is optimal!)

I Similar speed-up for cut problems, Laplacian solving etc.

I We speed up Koutis-Xu using two quantum tools:
find spanners in time O(

√
mn), and find the final set of

Õ(n/ε2) edges using Grover’s quantum search algorithm

I This gives an Õ(
√
mn/ε2)-algorithm. Improve ε-dependence

via Spielman-Srivastava’11 (based on “effective resistances”)

9/ 9

Summary

I Given any weighted graph G ,
in near-linear time we can compute a sparse graph H that
approximately preserves most properties of G

I Leads to near-linear time algorithms for many cut problems,
graph partitioning, Laplacian linear system solving, . . .

I Apers & dW’19: quantum computer can do it even faster

