Efficient Algorithms for
Graph Sparsification

Ronald de Wolf

W CI)‘U SOf t 'UNIVERSITEIT AMSTERDAM

Joint with Simon Apers (INRIA & CWI)

Graphs

> Big part of discrete mathematics

Reinhard Diestel

Graph Theory

» Graphs model many important phenomena:

> Logistics [j 7 Qi

» |nternet

» Social networks

» Sparse graphs are better than dense graphs:

» Need less space to store
» Need less time to operate on

Sparsifiers

» Graph G = (V, E, w) with vertex set V = [n], m = |E| edges,
weight function w : E — R>¢. Given as adjacency list

» Laplacian of graph G: Lg = Z w(e)Le

ecE
1 0 -1
Le:(i,j) = (e,- — ej)(e,- — ej)T = 0 0 0
-1 0 1

» An e-spectral sparsifier of G is a graph H=(V,E' C E,w/')
such that
forall x e R": x"Lgx = (1 £&)x" Lyx

So sparsification approximately preserves all quadratic forms
of the Laplacian. NB: reweighting is essential here

Sparsifiers preserve all cuts in the graph

» An e-spectral sparsifier of G = (V, E, w) is a graph
H=(V,E',w)st forall x e R": x"Lgx = (1 £ e)x" Lyx

» Special case: consider x € {0,1}", with support S.
xTLex =1 if edge e is cut, O otherwise. Hence

xTlex = Z w(e)xT Lex = Z w(e)

e ecSxS¢

is the value of the cut S, 5¢. So H preserves all cuts of G!

l{v ‘ S S
AN

—\[%

Good sparsifiers exist & are cheap to find!

An e-spectral sparsifier of G = (V, E, w) is a graph
H=(V,E'\w)st forall x e R": x"Lgx = (1 £&)x Lyx

» How sparse can we make H?

|E’| =~ n/e? edges are necessary and sufficient

» How quickly can we find such an H?
Near-linear time in the input length! O(m) time

(input given as adjacency list for each vertex)

» Many applications

Godel Prize 2015 for
Dan Spielman and Shang-Hua Teng

Applications (non-exhaustive list)

General idea to operate efficiently on graphs: first sparsify input
graph G, then run your best algorithm on the sparsifier H

P> Approximating min-cut in near-linear time

» Approximating max-cut up to the Goeman-Williamson ratio of
0.878 in near-linear time (better approximation is hard)

» Partitioning a graph: find min-cut and partition recursively

» Laplacian solving: given symmetric, diagonally-dominant
n X n matrix L with m nonzero entries, and b € R”,
find x s.t. Lx = b. Can solve this approximately in time O(m):
massage L to Laplacian Lg of a graph, sparsify, solve Lyx = b

Remarkable: few other problems solvable in near-linear time

How to efficiently compute a sparsifier

» Long line of work. We'll describe approach due to
Koutis-Xu'16, which repeatedly cuts number of edges in half
» Some edges are more important than others: IRA, LA

N&Y \»4(
> Idea: identify most important edges by finding O(log(n)?/<?)
disjoint spanners of G (preserve distances, linear-time comp.)
Keep their edges in the sparsifier, plus a random sample of
half of remaining edges reweighted by factor 2.
This gives a sparsifier with ~ m/2 edges.

> lterate this log times to reduce m to O(n/c?) edges

S

Faster quantum algorithm for sparsification

| 2

Apers & dW'19: quantum algorithm to find e-spectral
sparsifier H in sublinear time O(y/mn/e) (this is optimall)

Similar speed-up for cut problems, Laplacian solving etc.

We speed up Koutis-Xu using two quantum tools:
find spanners in time O(y/mn), and find the final set of
O(n/e?) edges using Grover's quantum search algorithm

WQ ‘%"/? = '%(n/ez)

|

adjacency list adj. list + k-ind. oracle Grover search

This gives an O(y/mn/<?)-algorithm. Improve e-dependence
via Spielman-Srivastava'll (based on “effective resistances”)

Summary

> Given any weighted graph G,
in near-linear time we can compute a sparse graph H that
approximately preserves most properties of G

AN\
ER St

» Leads to near-linear time algorithms for many cut problems,
graph partitioning, Laplacian linear system solving, ...

» Apers & dW'19: quantum computer can do it even faster

