
Can linear programs solve
NP-hard problems?

Ronald de Wolf

Can linear programs solve NP-hard problems? – p. 1/9

http://homepages.cwi.nl/~rdewolf


Linear programs

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

It has 4 kinds of resources: 650 of R1, 100 of R2,. . .

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

It has 4 kinds of resources: 650 of R1, 100 of R2,. . .
- type 1 uses 34 units of R1, type 2 uses 16 units of R1

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

It has 4 kinds of resources: 650 of R1, 100 of R2,. . .
- type 1 uses 34 units of R1, type 2 uses 16 units of R1

Maximizing profit is linear program

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

It has 4 kinds of resources: 650 of R1, 100 of R2,. . .
- type 1 uses 34 units of R1, type 2 uses 16 units of R1

Maximizing profit is linear program: max x1 + 4x2

s.t. 34x1 + 16x2 ≤ 650

. . . ≤ 100

. . .

x1, x2 ≥ 0

Can linear programs solve NP-hard problems? – p. 2/9



Linear programs

A factory produces 2 types of goods
- unit of type 1 gives profit e 1; type 2 gives profit e 4

It has 4 kinds of resources: 650 of R1, 100 of R2,. . .
- type 1 uses 34 units of R1, type 2 uses 16 units of R1

Maximizing profit is linear program: max x1 + 4x2

s.t. 34x1 + 16x2 ≤ 650
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Feasible region is a polytope

Can linear programs solve NP-hard problems? – p. 2/9



A bit of history of LPs

Can linear programs solve NP-hard problems? – p. 3/9



A bit of history of LPs

Simplex algorithm: developed by Kantorovich and
Dantzig for use in WWII, published by Dantzig in 1947.

Can linear programs solve NP-hard problems? – p. 3/9



A bit of history of LPs

Simplex algorithm: developed by Kantorovich and
Dantzig for use in WWII, published by Dantzig in 1947.

Walks along vertices of polytope, optimizing objective

Can linear programs solve NP-hard problems? – p. 3/9



A bit of history of LPs

Simplex algorithm: developed by Kantorovich and
Dantzig for use in WWII, published by Dantzig in 1947.

Walks along vertices of polytope, optimizing objective

Usually efficient in practice, worst-case exponential time

Can linear programs solve NP-hard problems? – p. 3/9



A bit of history of LPs

Simplex algorithm: developed by Kantorovich and
Dantzig for use in WWII, published by Dantzig in 1947.

Walks along vertices of polytope, optimizing objective

Usually efficient in practice, worst-case exponential time

Ellipsoid method (Khachiyan’79): takes polynomial time
in the worst case, but is not practical

Can linear programs solve NP-hard problems? – p. 3/9
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Simplex algorithm: developed by Kantorovich and
Dantzig for use in WWII, published by Dantzig in 1947.

Walks along vertices of polytope, optimizing objective

Usually efficient in practice, worst-case exponential time

Ellipsoid method (Khachiyan’79): takes polynomial time
in the worst case, but is not practical

Interior point method (Karmarkar’84): reasonably
efficient in practice

Can linear programs solve NP-hard problems? – p. 3/9



Can we solve NP-hard problems by LP?

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Swart’s LPs were symmetric, so they couldn’t work

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Swart’s LPs were symmetric, so they couldn’t work

20-year open problem: what about non-symmetric LP?

Can linear programs solve NP-hard problems? – p. 4/9



Can we solve NP-hard problems by LP?

Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Swart’s LPs were symmetric, so they couldn’t work

20-year open problem: what about non-symmetric LP?

Sometimes non-symmetry helps a lot! (Kaibel et al’10)

Can linear programs solve NP-hard problems? – p. 4/9
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Famous NP-hard problem: traveling salesman problem

Find shortest cycle that goes through each of n cities
exactly once

A polynomial-size LP for TSP would show P = NP

Swart’86–87 claimed to have found such LPs

Yannakakis’88: symmetric LPs for TSP are exponential

Swart’s LPs were symmetric, so they couldn’t work

20-year open problem: what about non-symmetric LP?

Sometimes non-symmetry helps a lot! (Kaibel et al’10)

Fiorini, Massar, Pokutta, Tiwary, dW (STOC’12):
any LP for TSP needs exponential size
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can reduce size very much.

Regular n-gon in R
2 has size n,

but is the projection of polytope Q

in higher dimension, of size O(logn)

Optimizing over P reduces to optimizing over Q.
If Q has small size, this can be done efficiently!

How small can size(Q) be?

Extension complexity:

xc(P ) = min{size(Q) | Q projects to P}

Our goal: strong lower bounds on xc(P ) for interesting P
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How to bound extension complexity?

Slack matrix S of a polytope P = conv(V )
with inequalities {Aix ≤ bi} and points V = {vj}:

Sij = bi − Aivj

NB: every entry is nonnegative; S is not unique

Yannakakis’88: xc(P ) = positive rank of S

Instead of considering all Q, can focus on slack matrix!

We can use nondeterministic communication
complexity to lower bound rank+(S)

Big problem until now: which polytope to analyze,
and how to analyze its slack matrix?
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remaining facets for other rows

S =



















...

· · · Mab · · ·

...

...



















xc(COR(n)) = rank+(S) ≥ rank+(M) ≥ 2Ω(n)
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Consequences for other polytopes

Via reduction from the correlation polytope:

TSP-polytope has extension complexity ≥ 2
√
n

Recently improved to ≥ 2n by Rothvoss

CUT-polytope has extension complexity ≥ 2n

For specific graphs, the stable-set polytope has
extension complexity ≥ 2n

So every linear program based on extended
formulations needs exponentially many constraints

This rules out many efficient algorithms for NP-hard
problems, and refutes all P=NP “proofs” à la Swart

Can linear programs solve NP-hard problems? – p. 9/9


	Linear programs
	Linear programs
	Linear programs
	Linear programs
	Linear programs
	Linear programs
	Linear programs
	Linear programs

	A bit of history of LPs
	A bit of history of LPs
	A bit of history of LPs
	A bit of history of LPs
	A bit of history of LPs
	A bit of history of LPs

	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?
	Can we solve NP-hard problems by LP?

	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems
	Polytopes and optimization problems

	Extended formulations of polytopes
	Extended formulations of polytopes
	Extended formulations of polytopes
	Extended formulations of polytopes
	Extended formulations of polytopes
	Extended formulations of polytopes
	Extended formulations of polytopes

	How to bound extension complexity?
	How to bound extension complexity?
	How to bound extension complexity?
	How to bound extension complexity?
	How to bound extension complexity?
	How to bound extension complexity?
	How to bound extension complexity?

	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope
	Lower bound for correlation polytope

	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes
	Consequences for other polytopes


