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W Motivation

 Many large scale critical systems are highly sensitive to the
local performance of individual components.

— traffic and transport networks, security systems, power grids, ...

 Local failure or attack could destabilise

the whole system. |

. . explicitly encode robustness
against significant rare events in the &
learning method. ww\\
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W What is Reinforcement Learning?

* Goal-oriented: learning about, from, and while
interacting with an external environment

* Learning what to do —
— S0 as to maximize a numerical reward signal
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W The Agent Learns a Policy
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. methods specify how the

agent changes its policy as a result of experience.

* Roughly, the agent’s goal is to get as much reward
as it can over the long run.



W Formal Model of Decision Problem

A Markov Decision Process is defined by:

— hext-state

 The value of a state s in an MDP under policy 7 is

V*(s) = Ey [zk_oykrtﬂcﬂ IS¢ =5

: discounted sum of rewards



W Bellman Equation (1950s)

State value function can be written as:

V™(s) = Ex{R¢|sy = s}
= Epires1 + YRe41)
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* The equation is regursive: V{s) deperids on V' (s").
* It sums over all possible
probability of gccurring:
— the action probability given by (s, a)

— the state transition probability given by P,

, weighted by their



W Temporal Difference (TD) Learning

Look at the difference between the current estimate of the
value of a state and the sampled reward plus the discounted
value of the next state.

Keep adjusting the value function aiming to reduce the

(until convergence).
: target — current estimate

V(st) « V(se) + alreyr +vV(sey1) —V(sp]

: an estimate of the return



W Learning an Action-Value Function

Estimate Q7 for the current behaviour policy .
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After every transition, update your estimate for Q as:

QCst, ar) < Qs ap) + alreyr + ¥Q(Se+1, A1) — Qst, a)]

TD error for Q

(if 5, ,is terminal, then Q(s¢41, a¢+1) = 0)



W Deriving the Policy

* For any (optimal) value function, we can easily derive a
policy that yields it:

n(s) = argmaxQ(s,a),Vs €S
a

e Typically, during learning we want to balance
(random actions) and (greedy actions)

* We distinguish a (what we wish to learn)
and a (how we collect experience)



W On-Policy vs. Off-Policy

(on-policy):
QCst, @) « Qs @) + alrers 4GQsear, @)~ Qs )]
(off-policy): target policy

v

Q(sg, ar) « Qs ar) + a [Tt+1 @ Q(SMD— Q(se, at)]




W Robust RL for Critical Domains

 Ourideain a nutshell: encode the expected
probability (and model) of attacks or failures
in the TD error ;.

e E.g., malicious attack with probability »:

Or = res1+Yy ((1 — %) max O(s¢+1,a) + %mgn O(St+1, a))—Q(st, ar)



W Results

Q-learning, |path| =6  Q(k) forx=0.01, |[path| =6  Q(k) for x=0.1, |path| = 8
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* For increasing attack probability »z we learn an
increasingly safe policy



W K-methods

We can easily build versions of standard TD methods
based on this idea.

Modified TD update rule: Q”(s,a) « Q" (s,a) + alr +yVE(s") =07 (s, a)]

target

. VE(s) = (1 - »n) max O(s,a) + %mgn O(s, a)

. VE(s) = (1 = %)Egq~r [Q(s, a)] + %main Q(s, a)

= (1 - %) Z m(als)Q(s, a) + %main Q(s, a)

* General k-model: VE(s) = > plals) D ols, Q7 (s, a)

oeC



Results

Cliff walking: deterministic environment Cliff walking: 10 % stochastic environment Cliff walking: 10 % attack while trained
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 Our new methods (green and purple) outperform
the original TD methods on which they are based



W Theoretical Analysis

* We prove convergence of both Q(k) and Expected SARSA(k)
to two different fixed points:

— to the optimal value function Q™ of the original MDP in the limit where
k — 0; and

— to the optimal robust value function Qy of the MDP that is generalized
w.r.t. k for constant parameter .
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sense is purely induced by %—>0l

the relevant operator. - -




W Conclusion

e k-versions of standard TD methods learn a
policy

— Especially beneficial in the early learning stage.
— Robust against model mis-specification.

* Proven to optimal value function.

* Promising empirical results in single- and multi-
agent settings.



