
Reinforcement Learning for Critical Domains

Daan Bloembergen

joint work with
Richard Klima (UoL), Michael Kaisers (CWI),

Karl Tuyls (DeepMind)

Motivation

• Many large scale critical systems are highly sensitive to the
local performance of individual components.
– traffic and transport networks, security systems, power grids, …

• Local failure or attack could destabilise
the whole system.

• Goal: explicitly encode robustness
against significant rare events in the
learning method.

What is Reinforcement Learning?

• Goal-oriented: learning about, from, and while
interacting with an external environment

• Learning what to do — how to map situations to
actions — so as to maximize a numerical reward signal

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

The Agent Learns a Policy

Policy at step t, !":
- a mapping from states to
action probabilities
- !" #, % = probability that
%" = % when #" = #

• Reinforcement learning methods specify how the
agent changes its policy as a result of experience.

• Roughly, the agent’s goal is to get as much reward
as it can over the long run.

Formal Model of Decision Problem

• A Markov Decision Process is defined by:
– state and action sets
– next-state transition probabilities
– reward expectations

• The value of a state ! in an MDP under policy " is

#$! = &$ '
()*

+
,(-./(/0 |!. = !

return: discounted sum of rewards

Bellman Equation (1950s)

State value function can be written as:

!" # = %" &' #' = #
= %" (')* + ,&')*
= -

.
/ #, 1 -

23
4223. 5223. + ,!" #6

• The equation is recursive: !(#) depends on !(#′).
• It sums over all possible future returns, weighted by their

probability of occurring:
– the action probability given by /(#, 1)
– the state transition probability given by 4223.

Temporal Difference (TD) Learning

• Temporal difference:
Look at the difference between the current estimate of the
value of a state and the sampled reward plus the discounted
value of the next state.

• Keep adjusting the value function aiming to reduce the TD
error (until convergence).

! "# ← ! "# + & '#() + *! "#() − ! "#

TD error: target – current estimate

target: an estimate of the return

Learning an Action-Value Function

Estimate Q" for the current behaviour policy " .

After every transition, update your estimate for Q as:

Q #$, &$ ← Q #$, &$ +) *$+, + -Q #$+,, &$+, − Q #$, &$

(if st+1 is terminal, then Q #$+,, &$+, = 0)

TD error for Q

Deriving the Policy

• For any (optimal) value function, we can easily derive a
policy that yields it:

! " = argmax
)

*(", -) , ∀" ∈ 1

• Typically, during learning we want to balance exploration
(random actions) and exploitation (greedy actions)

• We distinguish a target policy (what we wish to learn)
and a behavior policy (how we collect experience)

On-Policy vs. Off-Policy

Sarsa (on-policy):

Q "#, %# ← Q "#, %# + ()#*+ + ,Q "#*+, %#*+ − Q "#, %#

Q-learning (off-policy):

Q "#, %# ← Q "#, %# + ()#*+ + ,max1 Q "#*+, % − Q "#, %#

target policy

Robust RL for Critical Domains

• Our idea in a nutshell: encode the expected
probability (and model) of attacks or failures
in the TD error !".

• E.g., malicious attack with probability #:

AAMAS’19, May 2019, Montreal, Canada Paper #659

work transferred the objective of maximising tolerable disturbances
from control theory to reinforcement learning [16]. Our work is
similar to the therein de�ned Actor-disturber-critic, but we replace
its model of minimax simultaneous actions with stochastic tran-
sitions between multiple controllers (one being in control at any
time) with arbitrary objectives for each controller. Similarly, our ap-
proach has commonalities with themulti-agent reinforcement
learning algorithm Minimax-Q [13] for zero-sum games, which
assumes minimisation over the opponent action space. However,
in contrast, we de�ne an attack to minimise over our own action
space, and thus learn (but not enact) simultaneously our optimal
policy and the (rare) attacks it is susceptible to. We further cover
not only minimising adversaries but also random failures or any
other policy encoding other adversaries’ agendas (see Section 4.1).
While on-policy learning algorithms have been shown to perform
better than classical Q-learning in perturbed environment [23], and
can thus in some sense be considered safer (against mistakes or
exploration), our method combines with both on- and o�-policy
learning, and provides robustness against a chosen target.

3 BACKGROUND
This work belongs to the �eld of Reinforcement learning (RL) [27],
and makes use of the core concept of a Markov Decision Process
(MDP). An MDP is formally de�ned by a tuple (S,A,R, P), where S
is a �nite set of states, A is a �nite set of actions, R(s,a)! r 2 R is
a reward function for a given state s 2 S and an action a 2 A and
P(s 0 |s,a) is a transition function giving a probability of reaching
state s 0 after taking action a in state s . In this work we also consider
a multi-agent setting, which uses the formulation of the Stochastic
game, which is a generalization of MDP to multiple agents and is
de�ned by a tuple (n, S,A1 . . .An ,R1 . . .Rn , P), extending the MDP,
where n is the number of agents, Ai is the action space of agent i .
The joint action space is A = A1 [. . . [An , and a joint action is
a = (a1,a2, . . . ,an).1 Ri (s,ai ,a�i)! ri is the reward function of
agent i for given state s and joint action a, and P(s 0 |s,a) is the state
transition function.

The main goal of RL is �nding an optimal policy for given MDP.
One of the most common methods is Temporal di�erence (TD) learn-
ing, which is a one-step bootstrapping method based on Bellman
style equations. Of crucial importance in the TD learning is the
de�nition of the TD error, describing the di�erence between al-
ready learnt value and new information about the value obtained
from interacting with the environment. TD error, as the di�erence
between the target and the current value, prescribes the type of ad-
justment we make to the already learnt value. In this work we focus
on modifying the target, which has the standard form of r +�V (s 0),
where � is the discount factor and V (s 0) is the value of the next
state s 0. The target can be induced by the behaviour policy in which
case we are talking about on-policy methods or by something else
(e.g., maximization over the action space) in which case we arrive
to o�-policy type of learning. For further explanation of common
RL concepts used in this paper we refer the reader to Sutton and
Barto [27].

1We use the common shorthand a�i to denote the joint action of all agents except
agent i , i.e., a�i = (a1, . . . , ai�1, ai+1, . . . , an).

4 THE ROBUST TD OPERATOR �
Wenowpresent our robust TD operator�. Beforewe formally de�ne
the operator, we give an intuitive example. Suppose a Q-learning
agent needs to learn a safe policy against a potential malicious
adversary who could, with some probability �, take over control
in the next state.2 The value of the next state st+1, thus, depends
on who is in control3: if the agent is in control, she can choose an
optimal action that maximizes expected return; or if the adversary is
in control he might, in the worst case, aim to minimize the expected
return. This can be captured by the following modi�ed TD error

�t = rt+1+�
⇣
(1 � �)max

a
Q(st+1,a) + �min

a
Q(st+1,a)

⌘
�Q(st ,at),

where we assume that the agent has knowledge of (or can estimate)
the probability �.

In the following we �rst present a formal, general model of
the operator �, by modifying the target in the classical Bellman
style value function. We then present practical implementations of
TD(�) methods that use this operator for both single- and multi-
agent settings, based on the classical on- and o�-policy TD learning
algorithms (Expected) SARSA and Q-learning.

4.1 Formal Model
We consider a set ofm possible control policiesC = {�1, . . . ,�m }. At
each time step, one of these policies is in control (and thus decides
on the next action) with some probability p(�i |s) that may depend
on the state s . The set C and probability function p(·) are assumed
to be (approximately) known by the agent. In our new TD methods,
the value of the next state s 0 then becomes a function of both,
the state and the function p(·), which we capture in our proposed
operator �, asV � (s 0). Note that the setC includes the focal policy �
that we seek to optimise in face of (possibly adversarial) alternative
controllers. Such external control policies can represent for example
a malicious attacker, aiming to minimize the expected return, or
any arbitrary dynamics, such as random failures, represented by,
e.g., a uniformly random policy. Based on a prior assumption about
the nature of � we want to optimise the focal policy � without
necessarily observing actual attacks or failures. This means learning
our robust policy � right from the start.

We de�ne � in terms of our own Q-value function, for example
an attacker that is minimising our expected return. Thus we need to
learn only one Q-value function Q� . This is similar to the standard
assumption in Stackelberg games that the attacker is able to fully
observe our past actions and thus can enact the informed best
response. We de�ne the Q-value function update for our policy �
based on standard Bellman equation and given the operator � as

Q� (s,a) Q� (s,a) + �
h
r + �V � (s 0)| {z }

target

�Q� (s,a)
i
. (1)

2We use the symbol � to denote the proposed TD operator and the symbol � for the
parameter of probability of attack, both are di�erent versions of the letter “kappa”.
3Note that while a token of control could be included in the state (doubling its size),
our approach rather directly applies model-based bootstrap updates. This makes it
explicit that the robustness target is a chosen parameter of the operator, and makes it
possible to learn robust strategies before observing SREs, or when learning does not
occur during SREs due to compromisation.

modified estimate of next state value

Results

• For increasing attack probability ! we learn an
increasingly safe policy

!-methods

We can easily build versions of standard TD methods
based on this idea.

• Modified TD update rule:

• Q(#)-learning:

• Expected Sarsa(#):

• General !-model:

AAMAS’19, May 2019, Montreal, Canada Paper #659

work transferred the objective of maximising tolerable disturbances
from control theory to reinforcement learning [16]. Our work is
similar to the therein de�ned Actor-disturber-critic, but we replace
its model of minimax simultaneous actions with stochastic tran-
sitions between multiple controllers (one being in control at any
time) with arbitrary objectives for each controller. Similarly, our ap-
proach has commonalities with themulti-agent reinforcement
learning algorithm Minimax-Q [13] for zero-sum games, which
assumes minimisation over the opponent action space. However,
in contrast, we de�ne an attack to minimise over our own action
space, and thus learn (but not enact) simultaneously our optimal
policy and the (rare) attacks it is susceptible to. We further cover
not only minimising adversaries but also random failures or any
other policy encoding other adversaries’ agendas (see Section 4.1).
While on-policy learning algorithms have been shown to perform
better than classical Q-learning in perturbed environment [23], and
can thus in some sense be considered safer (against mistakes or
exploration), our method combines with both on- and o�-policy
learning, and provides robustness against a chosen target.

3 BACKGROUND
This work belongs to the �eld of Reinforcement learning (RL) [27],
and makes use of the core concept of a Markov Decision Process
(MDP). An MDP is formally de�ned by a tuple (S,A,R, P), where S
is a �nite set of states, A is a �nite set of actions, R(s,a)! r 2 R is
a reward function for a given state s 2 S and an action a 2 A and
P(s 0 |s,a) is a transition function giving a probability of reaching
state s 0 after taking action a in state s . In this work we also consider
a multi-agent setting, which uses the formulation of the Stochastic
game, which is a generalization of MDP to multiple agents and is
de�ned by a tuple (n, S,A1 . . .An ,R1 . . .Rn , P), extending the MDP,
where n is the number of agents, Ai is the action space of agent i .
The joint action space is A = A1 [. . . [An , and a joint action is
a = (a1,a2, . . . ,an).1 Ri (s,ai ,a�i)! ri is the reward function of
agent i for given state s and joint action a, and P(s 0 |s,a) is the state
transition function.

The main goal of RL is �nding an optimal policy for given MDP.
One of the most common methods is Temporal di�erence (TD) learn-
ing, which is a one-step bootstrapping method based on Bellman
style equations. Of crucial importance in the TD learning is the
de�nition of the TD error, describing the di�erence between al-
ready learnt value and new information about the value obtained
from interacting with the environment. TD error, as the di�erence
between the target and the current value, prescribes the type of ad-
justment we make to the already learnt value. In this work we focus
on modifying the target, which has the standard form of r +�V (s 0),
where � is the discount factor and V (s 0) is the value of the next
state s 0. The target can be induced by the behaviour policy in which
case we are talking about on-policy methods or by something else
(e.g., maximization over the action space) in which case we arrive
to o�-policy type of learning. For further explanation of common
RL concepts used in this paper we refer the reader to Sutton and
Barto [27].

1We use the common shorthand a�i to denote the joint action of all agents except
agent i , i.e., a�i = (a1, . . . , ai�1, ai+1, . . . , an).

4 THE ROBUST TD OPERATOR �
Wenowpresent our robust TD operator�. Beforewe formally de�ne
the operator, we give an intuitive example. Suppose a Q-learning
agent needs to learn a safe policy against a potential malicious
adversary who could, with some probability �, take over control
in the next state.2 The value of the next state st+1, thus, depends
on who is in control3: if the agent is in control, she can choose an
optimal action that maximizes expected return; or if the adversary is
in control he might, in the worst case, aim to minimize the expected
return. This can be captured by the following modi�ed TD error

�t = rt+1+�
⇣
(1 � �)max

a
Q(st+1,a) + �min

a
Q(st+1,a)

⌘
�Q(st ,at),

where we assume that the agent has knowledge of (or can estimate)
the probability �.

In the following we �rst present a formal, general model of
the operator �, by modifying the target in the classical Bellman
style value function. We then present practical implementations of
TD(�) methods that use this operator for both single- and multi-
agent settings, based on the classical on- and o�-policy TD learning
algorithms (Expected) SARSA and Q-learning.

4.1 Formal Model
We consider a set ofm possible control policiesC = {�1, . . . ,�m }. At
each time step, one of these policies is in control (and thus decides
on the next action) with some probability p(�i |s) that may depend
on the state s . The set C and probability function p(·) are assumed
to be (approximately) known by the agent. In our new TD methods,
the value of the next state s 0 then becomes a function of both,
the state and the function p(·), which we capture in our proposed
operator �, asV � (s 0). Note that the setC includes the focal policy �
that we seek to optimise in face of (possibly adversarial) alternative
controllers. Such external control policies can represent for example
a malicious attacker, aiming to minimize the expected return, or
any arbitrary dynamics, such as random failures, represented by,
e.g., a uniformly random policy. Based on a prior assumption about
the nature of � we want to optimise the focal policy � without
necessarily observing actual attacks or failures. This means learning
our robust policy � right from the start.

We de�ne � in terms of our own Q-value function, for example
an attacker that is minimising our expected return. Thus we need to
learn only one Q-value function Q� . This is similar to the standard
assumption in Stackelberg games that the attacker is able to fully
observe our past actions and thus can enact the informed best
response. We de�ne the Q-value function update for our policy �
based on standard Bellman equation and given the operator � as

Q� (s,a) Q� (s,a) + �
h
r + �V � (s 0)| {z }

target

�Q� (s,a)
i
. (1)

2We use the symbol � to denote the proposed TD operator and the symbol � for the
parameter of probability of attack, both are di�erent versions of the letter “kappa”.
3Note that while a token of control could be included in the state (doubling its size),
our approach rather directly applies model-based bootstrap updates. This makes it
explicit that the robustness target is a chosen parameter of the operator, and makes it
possible to learn robust strategies before observing SREs, or when learning does not
occur during SREs due to compromisation.

Robust temporal di�erence learning for critical domains AAMAS’19, May 2019, Montreal, Canada

Note that where in the standard Bellman equation we would have
V � (s) = Õ

a � (s,a)Q� (s,a), in our case we have

V � (s) =
’
� 2C

p(� |s)
’
a

� (s,a)Q� (s,a), (2)

computed as a weighted sum over all possible control policies � 2
C . Note that we can learn Q� without actually experiencing any
attack or malfunction, based only on prior assumptions about the
possible control policies as captured by the operator �. We refer
to this target modi�cation as the operator � because it closely
resembles the Bellman optimality operator T?, which is de�ned as
T?V (s) = maxa

⇥
R(s,a)+Õs 0 P(s 0 |s,a)�V (s 0)

⇤
. Thus, we can then

formally de�ne the � optimality operator T?
� by substituting the

value function V (·) with V � (·).
In the following we present several �-versions of classical TD

methods. For simplicity we assume a scenario in which we have
only a single adversarial external policy � that aims to minimize
our value, and thus C = {� ,� }. Note however that our model is
general, and would work for any C and p(·).

4.2 Examples of TD(�) Methods
We �rst present single-agent �-based learning methods by building
on the standard TDmethods Q-learning and Expected SARSA. Then
we present two-agent joint-action learning approaches. Although a
generalization to n agents is relatively straightforward, we choose
to focus solely on the single- and two-agent case in this paper
for clarity of exposition. In each case, we consider the setting in
which either the focal agent, with policy � , is in control, or the
external adversary with policy � aiming to minimize return. We
further simplify the model by making the control policy probability
function p(·) state-independent, reducing it to a probability vector.

4.2.1 Single-Agent Methods. Before we present the algorithms,
it is important to note that we need to distinguish the target and
behaviour policies. The �-operator is de�ned on the target (see
Eq. (1)), while the behaviour policy is used only for selecting actions.
We assume an �-greedy behaviour policy throughout.

In o�-policy Q(�), the target policy is the greedy policy � (s) =
argmaxa Q(s,a) that maximizes expected return. The adversarial
policy on the other hand aims to minimize the return, i.e., � (s) =
argmina Q(s,a). Assuming a probability of attack of � as before,
we have p(�) = (1 � �) and p(�) = �. Thus, Eq. (2) becomes

V � (s) = (1 � �)max
a

Q(s,a) + �min
a

Q(s,a).

For on-policy Expected SARSA(�) the target is the (expecta-
tion over the) focal policy � , while the adversarial policy � remains
the same as before. Thus, we have

V � (s) = (1 � �)Ea⇠�
⇥
Q(s,a)

⇤
+ �min

a
Q(s,a)

= (1 � �)
’
a

� (a |s)Q(s,a) + �min
a

Q(s,a).

4.2.2 Multi-Agent Methods. We move from a single-agent set-
ting to a scenario in which multiple agents interact. For sake of
exposition we only present a two-agent case, which we further
examine in the remainder of this paper.

We assume two agents with di�erent action spaces, A1 and A2,
but an identical reward function and thus a shared joint action

Q-value function Q : S ⇥A1 ⇥A2 ! R. Moreover, we assume full
communication during the learning phase, allowing the agents to
take each other’s policies into account when selecting the next
action.4 Our algorithms are therefore based on the joint-action
learning (JAL) paradigm [4]. We further assume that only one
agent can be attacked at each time step.5 Formulti-agent Q(�) we
can write Eq. (2) for each individual agent as

V � (s) = (1 � �)max
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A2

max
A1

Q(s, ha1,a2i)

with a1 2 A1 and a2 2 A2, representing the scenario in which no
attack happens with probability (1 � �), and each agent is attacked
individually with probability �/2.6 Analogously, we can de�ne Eq. (2)
for multi-agent Expected SARSA(�) as

V � (s) = (1 � �) Ea1⇠�1,a2⇠�2
⇥
Q(s, ha1,a2i)

⇤
+

�

2
min
A1
Ea2⇠�2

⇥
Q(s, ha1,a2i)

⇤

+
�

2
min
A2
Ea1⇠�1

⇥
Q(s, ha1,a2i)

⇤
where we now compute an expectation over the actual policy of the
agents that are not attacked, while the attacker is still minimizing.

5 THEORETICAL ANALYSIS
In this section we analyze theoretical properties of the proposed
�-methods. We start by relating the di�erent algorithms to each
other in the limit of their respective parameters. Then we proceed
to show convergence of both Q(�) and Expected SARSA(�) to two
di�erent �xed points: (i) to the optimal value function Q? of the
original MDP in the limit where � ! 0; and (ii) to the optimal
robust value function Q?

� of the MDP that is generalized w.r.t. � for
constant parameter �. Note that optimality in this sense is purely
induced by the relevant operator. In (i) this is the standard Bellman
optimality which maximizes the expected discounted return of
the MDP. However, in (ii) we derive optimality in the context of
Generalized MDPs [29], where optimal simply means the �xed point
of a given operator, which can take many forms.

Before proceeding with the convergence proofs, Figure 1 summa-
rizes some relationships between the algorithms in terms of their
targets, in the limit of their respective parameters: As is known,
Expected SARSA, SARSA, and Q-learning become identical in the
limit of a greedy policy [27, 31]. Furthermore, the update targets
of our �-methods approach the update targets of the standard TD
methods on which they are based as � ! 0. Finally, Expected
SARSA(�) and Q(�) share the same relationship as their original
versions, and thus Expected SARSA(�) approaches Q(�) as � ! 0.
Note that the algorithms’ equivalence in the limit does not hold in
the transient phase of the learning process, and hence in practice
they may converge on di�erent paths and to di�erent policies that
share the same value function. For a comprehensive understanding
4A common practice in cooperative multi-agent learning settings, see e.g., [7, 26].
5Although relaxing this assumption is straightforward, we opt to keep it for clarity.
6Note the order of the minmax, which follows the Stackelberg assumption of an
all-knowing attacker who moves last.

Robust temporal di�erence learning for critical domains AAMAS’19, May 2019, Montreal, Canada

Note that where in the standard Bellman equation we would have
V � (s) = Õ

a � (s,a)Q� (s,a), in our case we have

V � (s) =
’
� 2C

p(� |s)
’
a

� (s,a)Q� (s,a), (2)

computed as a weighted sum over all possible control policies � 2
C . Note that we can learn Q� without actually experiencing any
attack or malfunction, based only on prior assumptions about the
possible control policies as captured by the operator �. We refer
to this target modi�cation as the operator � because it closely
resembles the Bellman optimality operator T?, which is de�ned as
T?V (s) = maxa

⇥
R(s,a)+Õs 0 P(s 0 |s,a)�V (s 0)

⇤
. Thus, we can then

formally de�ne the � optimality operator T?
� by substituting the

value function V (·) with V � (·).
In the following we present several �-versions of classical TD

methods. For simplicity we assume a scenario in which we have
only a single adversarial external policy � that aims to minimize
our value, and thus C = {� ,� }. Note however that our model is
general, and would work for any C and p(·).

4.2 Examples of TD(�) Methods
We �rst present single-agent �-based learning methods by building
on the standard TDmethods Q-learning and Expected SARSA. Then
we present two-agent joint-action learning approaches. Although a
generalization to n agents is relatively straightforward, we choose
to focus solely on the single- and two-agent case in this paper
for clarity of exposition. In each case, we consider the setting in
which either the focal agent, with policy � , is in control, or the
external adversary with policy � aiming to minimize return. We
further simplify the model by making the control policy probability
function p(·) state-independent, reducing it to a probability vector.

4.2.1 Single-Agent Methods. Before we present the algorithms,
it is important to note that we need to distinguish the target and
behaviour policies. The �-operator is de�ned on the target (see
Eq. (1)), while the behaviour policy is used only for selecting actions.
We assume an �-greedy behaviour policy throughout.

In o�-policy Q(�), the target policy is the greedy policy � (s) =
argmaxa Q(s,a) that maximizes expected return. The adversarial
policy on the other hand aims to minimize the return, i.e., � (s) =
argmina Q(s,a). Assuming a probability of attack of � as before,
we have p(�) = (1 � �) and p(�) = �. Thus, Eq. (2) becomes

V � (s) = (1 � �)max
a

Q(s,a) + �min
a

Q(s,a).

For on-policy Expected SARSA(�) the target is the (expecta-
tion over the) focal policy � , while the adversarial policy � remains
the same as before. Thus, we have

V � (s) = (1 � �)Ea⇠�
⇥
Q(s,a)

⇤
+ �min

a
Q(s,a)

= (1 � �)
’
a

� (a |s)Q(s,a) + �min
a

Q(s,a).

4.2.2 Multi-Agent Methods. We move from a single-agent set-
ting to a scenario in which multiple agents interact. For sake of
exposition we only present a two-agent case, which we further
examine in the remainder of this paper.

We assume two agents with di�erent action spaces, A1 and A2,
but an identical reward function and thus a shared joint action

Q-value function Q : S ⇥A1 ⇥A2 ! R. Moreover, we assume full
communication during the learning phase, allowing the agents to
take each other’s policies into account when selecting the next
action.4 Our algorithms are therefore based on the joint-action
learning (JAL) paradigm [4]. We further assume that only one
agent can be attacked at each time step.5 Formulti-agent Q(�) we
can write Eq. (2) for each individual agent as

V � (s) = (1 � �)max
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A2

max
A1

Q(s, ha1,a2i)

with a1 2 A1 and a2 2 A2, representing the scenario in which no
attack happens with probability (1 � �), and each agent is attacked
individually with probability �/2.6 Analogously, we can de�ne Eq. (2)
for multi-agent Expected SARSA(�) as

V � (s) = (1 � �) Ea1⇠�1,a2⇠�2
⇥
Q(s, ha1,a2i)

⇤
+

�

2
min
A1
Ea2⇠�2

⇥
Q(s, ha1,a2i)

⇤

+
�

2
min
A2
Ea1⇠�1

⇥
Q(s, ha1,a2i)

⇤
where we now compute an expectation over the actual policy of the
agents that are not attacked, while the attacker is still minimizing.

5 THEORETICAL ANALYSIS
In this section we analyze theoretical properties of the proposed
�-methods. We start by relating the di�erent algorithms to each
other in the limit of their respective parameters. Then we proceed
to show convergence of both Q(�) and Expected SARSA(�) to two
di�erent �xed points: (i) to the optimal value function Q? of the
original MDP in the limit where � ! 0; and (ii) to the optimal
robust value function Q?

� of the MDP that is generalized w.r.t. � for
constant parameter �. Note that optimality in this sense is purely
induced by the relevant operator. In (i) this is the standard Bellman
optimality which maximizes the expected discounted return of
the MDP. However, in (ii) we derive optimality in the context of
Generalized MDPs [29], where optimal simply means the �xed point
of a given operator, which can take many forms.

Before proceeding with the convergence proofs, Figure 1 summa-
rizes some relationships between the algorithms in terms of their
targets, in the limit of their respective parameters: As is known,
Expected SARSA, SARSA, and Q-learning become identical in the
limit of a greedy policy [27, 31]. Furthermore, the update targets
of our �-methods approach the update targets of the standard TD
methods on which they are based as � ! 0. Finally, Expected
SARSA(�) and Q(�) share the same relationship as their original
versions, and thus Expected SARSA(�) approaches Q(�) as � ! 0.
Note that the algorithms’ equivalence in the limit does not hold in
the transient phase of the learning process, and hence in practice
they may converge on di�erent paths and to di�erent policies that
share the same value function. For a comprehensive understanding
4A common practice in cooperative multi-agent learning settings, see e.g., [7, 26].
5Although relaxing this assumption is straightforward, we opt to keep it for clarity.
6Note the order of the minmax, which follows the Stackelberg assumption of an
all-knowing attacker who moves last.

Robust temporal di�erence learning for critical domains AAMAS’19, May 2019, Montreal, Canada

Note that where in the standard Bellman equation we would have
V � (s) = Õ

a � (s,a)Q� (s,a), in our case we have

V � (s) =
’
� 2C

p(� |s)
’
a

� (s,a)Q� (s,a), (2)

computed as a weighted sum over all possible control policies � 2
C . Note that we can learn Q� without actually experiencing any
attack or malfunction, based only on prior assumptions about the
possible control policies as captured by the operator �. We refer
to this target modi�cation as the operator � because it closely
resembles the Bellman optimality operator T?, which is de�ned as
T?V (s) = maxa

⇥
R(s,a)+Õs 0 P(s 0 |s,a)�V (s 0)

⇤
. Thus, we can then

formally de�ne the � optimality operator T?
� by substituting the

value function V (·) with V � (·).
In the following we present several �-versions of classical TD

methods. For simplicity we assume a scenario in which we have
only a single adversarial external policy � that aims to minimize
our value, and thus C = {� ,� }. Note however that our model is
general, and would work for any C and p(·).

4.2 Examples of TD(�) Methods
We �rst present single-agent �-based learning methods by building
on the standard TDmethods Q-learning and Expected SARSA. Then
we present two-agent joint-action learning approaches. Although a
generalization to n agents is relatively straightforward, we choose
to focus solely on the single- and two-agent case in this paper
for clarity of exposition. In each case, we consider the setting in
which either the focal agent, with policy � , is in control, or the
external adversary with policy � aiming to minimize return. We
further simplify the model by making the control policy probability
function p(·) state-independent, reducing it to a probability vector.

4.2.1 Single-Agent Methods. Before we present the algorithms,
it is important to note that we need to distinguish the target and
behaviour policies. The �-operator is de�ned on the target (see
Eq. (1)), while the behaviour policy is used only for selecting actions.
We assume an �-greedy behaviour policy throughout.

In o�-policy Q(�), the target policy is the greedy policy � (s) =
argmaxa Q(s,a) that maximizes expected return. The adversarial
policy on the other hand aims to minimize the return, i.e., � (s) =
argmina Q(s,a). Assuming a probability of attack of � as before,
we have p(�) = (1 � �) and p(�) = �. Thus, Eq. (2) becomes

V � (s) = (1 � �)max
a

Q(s,a) + �min
a

Q(s,a).

For on-policy Expected SARSA(�) the target is the (expecta-
tion over the) focal policy � , while the adversarial policy � remains
the same as before. Thus, we have

V � (s) = (1 � �)Ea⇠�
⇥
Q(s,a)

⇤
+ �min

a
Q(s,a)

= (1 � �)
’
a

� (a |s)Q(s,a) + �min
a

Q(s,a).

4.2.2 Multi-Agent Methods. We move from a single-agent set-
ting to a scenario in which multiple agents interact. For sake of
exposition we only present a two-agent case, which we further
examine in the remainder of this paper.

We assume two agents with di�erent action spaces, A1 and A2,
but an identical reward function and thus a shared joint action

Q-value function Q : S ⇥A1 ⇥A2 ! R. Moreover, we assume full
communication during the learning phase, allowing the agents to
take each other’s policies into account when selecting the next
action.4 Our algorithms are therefore based on the joint-action
learning (JAL) paradigm [4]. We further assume that only one
agent can be attacked at each time step.5 Formulti-agent Q(�) we
can write Eq. (2) for each individual agent as

V � (s) = (1 � �)max
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A1

max
A2

Q(s, ha1,a2i)

+
�

2
min
A2

max
A1

Q(s, ha1,a2i)

with a1 2 A1 and a2 2 A2, representing the scenario in which no
attack happens with probability (1 � �), and each agent is attacked
individually with probability �/2.6 Analogously, we can de�ne Eq. (2)
for multi-agent Expected SARSA(�) as

V � (s) = (1 � �) Ea1⇠�1,a2⇠�2
⇥
Q(s, ha1,a2i)

⇤
+

�

2
min
A1
Ea2⇠�2

⇥
Q(s, ha1,a2i)

⇤

+
�

2
min
A2
Ea1⇠�1

⇥
Q(s, ha1,a2i)

⇤
where we now compute an expectation over the actual policy of the
agents that are not attacked, while the attacker is still minimizing.

5 THEORETICAL ANALYSIS
In this section we analyze theoretical properties of the proposed
�-methods. We start by relating the di�erent algorithms to each
other in the limit of their respective parameters. Then we proceed
to show convergence of both Q(�) and Expected SARSA(�) to two
di�erent �xed points: (i) to the optimal value function Q? of the
original MDP in the limit where � ! 0; and (ii) to the optimal
robust value function Q?

� of the MDP that is generalized w.r.t. � for
constant parameter �. Note that optimality in this sense is purely
induced by the relevant operator. In (i) this is the standard Bellman
optimality which maximizes the expected discounted return of
the MDP. However, in (ii) we derive optimality in the context of
Generalized MDPs [29], where optimal simply means the �xed point
of a given operator, which can take many forms.

Before proceeding with the convergence proofs, Figure 1 summa-
rizes some relationships between the algorithms in terms of their
targets, in the limit of their respective parameters: As is known,
Expected SARSA, SARSA, and Q-learning become identical in the
limit of a greedy policy [27, 31]. Furthermore, the update targets
of our �-methods approach the update targets of the standard TD
methods on which they are based as � ! 0. Finally, Expected
SARSA(�) and Q(�) share the same relationship as their original
versions, and thus Expected SARSA(�) approaches Q(�) as � ! 0.
Note that the algorithms’ equivalence in the limit does not hold in
the transient phase of the learning process, and hence in practice
they may converge on di�erent paths and to di�erent policies that
share the same value function. For a comprehensive understanding
4A common practice in cooperative multi-agent learning settings, see e.g., [7, 26].
5Although relaxing this assumption is straightforward, we opt to keep it for clarity.
6Note the order of the minmax, which follows the Stackelberg assumption of an
all-knowing attacker who moves last.

Results

• Our new methods (green and purple) outperform
the original TD methods on which they are based

Theoretical Analysis

• We prove convergence of both Q(") and Expected SARSA(")
to two different fixed points:
– to the optimal value function $⋆ of the original MDP in the limit where
" → 0; and

– to the optimal robust value function $(⋆ of the MDP that is generalized
w.r.t. " for constant parameter).

• Note that optimality in this
sense is purely induced by
the relevant operator.

AAMAS’19, May 2019, Montreal, Canada Paper #659

Q(�)Expected
SARSA(�)

� ! 0

Expected
SARSA

� ! 0

Q-learning

� ! 0

� ! 0

SARSA

� ! 0 � ! 0

Figure 1: The relationship between the learning targets of
di�erent algorithms in the limits of their parameters. On-
policy methods are in green, o�-policy methods in orange.

of the algorithms introduced in Section 4.2, the following sections
provide proofs for both convergence of � methods for � ! 0, as
well as their convergence when � stays constant.

While we focus on the adversarial targets considered in Sec-
tion 4.2, a previous proof of convergence under persistent explo-
ration [29] can be interpreted as a model of random failures with
�xed kappa.

5.1 Convergence to the Optimal Q?

There exist several proofs of convergence for the temporal dif-
ference algorithms Q-learning [9, 30], SARSA [23], and Expected
SARSA [31]. Each of these proofs hinges on linking the studied
algorithm to a stochastic process, and then using convergence re-
sults from stochastic approximation theory [6, 19]. These proofs are
based on the following lemma, presented as Theorem 1 in Jaakkola
et al. [9] and as Lemma 1 in Singh et al. [23]. These di�er in the
third condition, which describes the contraction mapping of the op-
erator. The contraction property used for the Q-learning proof [9]
has the form | |E{Ft (·)|Pt }| |  � | |�t | |, where � 2 [0, 1). We show
the lemma as it was used for the SARSA proof provided by Singh
et al. [23], who show that the contraction property does not need to
be strict; strict contraction is required to hold only asymptotically.

L���� 5.1. Consider a stochastic process (�t ,�t , Ft), t � 0, where
�t ,�t , Ft : X ! R satisfy the equations

�t+1(x) =
�
1 � �t (x)

�
�t (x) + �t (x)Ft (x), x 2 X , t = 0, 1, 2, . . .

Let Pt be a sequence of increasing � -�elds such that �0 and �0 are
P0-measurable and �t ,�t and Ft�1 are Pt -measurable, t = 1, 2,
Then, �t converges to zero with probability one (w.p.1) under the
following assumptions:

(1) the set X is �nite,
(2) 0  �t (xt)  1,

Õ
t �t (xt) = 1,

Õ
t �

2
t (xt) < 1 w.p.1,

(3) | |E{Ft (·)|Pt }| |  � | |�t | | + ct , where � 2 [0, 1) and ct con-
verges to zero w.p.1,

(4) Var {Ft (xt)|Pt }  K(1 + | |�t | |)2, where K is some constant,
where | | · | | denotes a maximum norm.

The proof continues by relating Lemma 5.1 to the temporal dif-
ference algorithm, following the same reasoning as Van Seijen et al.
[31] in their convergence proof for Expected SARSA. We de�ne
X = S ⇥ A, Pt = {Q0, s0,a0, r0,�0, s1,a1, . . . , st ,at },xt = (st ,at),
which represents the past at step t and �t (xt) = �t (st ,at) is a learn-
ing rate for state st and action at . To show the convergence ofQ to

the optimal �xed point Q? we set �t (xt) = Qt (st ,at) �Q?(st ,at),
therefore when �t converges to zero, then the Q values converge
to Q?. The maximum norm | | · | | can be expressed as maximizing
over states and actions as | |�t | | = maxs maxa |Qt (s,a) �Q?(s,a)|.

We follow the reasoning of Theorem 1 from Van Seijen et al.
[31], where we repeat the conditions (1), (2) and (4) and modify the
condition (3) for the � methods as:

T������ 5.2. Q(�) and Expected SARSA(�) as de�ned in Section
4.2.1 using the respective value function V � , de�ned by

Qt+1(st ,at) = (1��t (st ,at))Qt (st ,at)+�t (st ,at)[rt +�V �
t (st+1)]

converge to the optimal Q function Q?(s,a) if:
(1) the state space S and action space A are �nite,
(2) �t (st ,at) 2 (0, 1), Õt �t (st ,at) = 1 and

Õ
t �

2
t (st ,at) < 1

w.p.1,
(3) � converges to zero w.p.1,
(3a) for Expected SARSA(�) the policy is greedy in the limit with

in�nite exploration (GLIE assumption),
(4) the reward function is bounded.

P����. Convergence of Q(�): To prove convergence of Q(�) we
have to show that the conditions from Lemma 5.1 hold. Conditions
(1), (2) and (4) of Theorem 5.2 correspond to conditions (1), (2) and
(4) of Lemma 5.1 [31]. We now need to show that the contraction
property holds as well, using condition (3) of Theorem 5.2. Adapting
the proof of Van Seijen et al. [31], we set Ft (x) = Ft (s,a) = rt (s,a)+
�V �

t (s 0) �Q?(s,a) to show that Ft (s,a) is a contraction mapping,
i.e., condition (3) in Lemma 5.1. For Q(�) we write:

Ft = rt +�
�
(1��)max

a
Qt (st+1,a)+�min

a
Qt (st+1,a)

�
�Q?(st ,at).

We want to show that | |E{Ft }| |  � | |�t | | + ct to prove the conver-
gence of Q(�) to the optimal value Q?.
| |E{Ft }| |
= | |E{rt + �

�
(1 � �)max

a
Qt (st+1,a) + �min

a
Qt (st+1,a)

�
�Q?(st ,at)}| |

 | |E{rt + � max
a

Qt (st+1,a) �Q?(st ,at)}| |+
� | |E{�min

a
Qt (st+1,a) � �max

a
Qt (st+1,a)}| |

 � max
s

|max
a

Qt (s,a) �max
a

Q?(s,a)|+
� max

s
|�min

a
Qt (s,a) � �max

a
Qt (s,a)|

 � | |�t | |+
��max

s
|min

a
Qt (s,a) �max

a
Qt (s,a)|,

where the �rst inequality follows from standard algebra and the
fact that splitting the maximum norm yields at least as large a
number, the second inequality follows from the de�nition of Q?7

and the maximal di�erence in values over all states being at least
as large as a di�erence between values given in state st+1, and
the third inequality follows from the de�nition of | |�t | | above. We
can see that if we set ct = ��maxs |mina Qt (s,a)�maxa Qt (s,a)|,
then for � ! 0 we get ct converging to zero w.p.1, thus proving
convergence of Q(�). ⌅

7Recall that we set out in this section to show convergence to the same optimal Q-value
as classical Q-learning Q?(st , a) = rt + � maxa0 Q?(st+1, a0), even if we do so by
our new operator.

Conclusion

• !-versions of standard TD methods learn a safer
policy before experiencing the deviation
– Especially beneficial in the early learning stage.
– Robust against model mis-specification.

• Proven convergence to optimal value function.

• Promising empirical results in single- and multi-
agent settings.

