

Reinforcement Learning for Critical Domains

Daan Bloembergen

joint work with

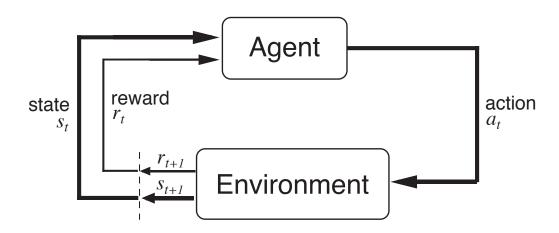
Richard Klima (UoL), Michael Kaisers (CWI), Karl Tuyls (DeepMind)

Motivation

- Many large scale **critical systems** are highly sensitive to the local performance of individual components.
 - traffic and transport networks, security systems, power grids, ...
- Local failure or attack could destabilise the whole system.
- Goal: explicitly encode robustness against significant rare events in the learning method.

What is Reinforcement Learning?

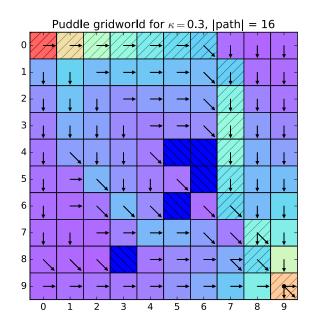
- Goal-oriented: learning about, from, and while interacting with an external environment
- Learning what to do how to map situations to actions — so as to maximize a numerical reward signal



The Agent Learns a Policy

Policy at step *t*, π_t :

- a mapping from states to action probabilities
- $-\pi_t(s, a) = \text{probability that}$ $a_t = a$ when $s_t = s$



- **Reinforcement learning** methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

Formal Model of Decision Problem

- A Markov Decision Process is defined by:
 - state and action sets
 - next-state transition probabilities
 - reward expectations
- The value of a state s in an MDP under policy π is

$$V^{\pi}(s) = E_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \right]$$
return: discounted sum of rewards

Bellman Equation (1950s)

State value function can be written as:

$$V^{\pi}(s) = E_{\pi} \{R_{t} | s_{t} = s\}$$

= $E_{\pi} \{r_{t+1} + \gamma R_{t+1}\}$
= $\sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{\pi}(s')]$

- The equation is **recursive**: V(s) depends on V(s').
- It sums over all possible future returns, weighted by their probability of occurring:
 - the **action probability** given by $\pi(s, a)$
 - the state transition probability given by $P_{ss'}^a$

Temporal Difference (TD) Learning

• Temporal difference:

Look at the difference between the *current estimate* of the value of a state and the *sampled reward plus the discounted value of the next state*.

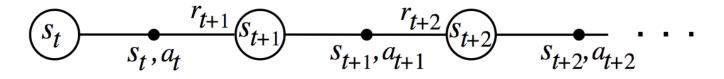
 Keep adjusting the value function aiming to reduce the TD error (until convergence).

$$V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

target: an estimate of the return

Learning an Action-Value Function

Estimate \mathbf{Q}^{π} for the current behaviour policy π .



After every transition, update your estimate for Q as:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

TD error for Q

(if s_{t+1} is terminal, then $Q(s_{t+1}, a_{t+1}) = 0$)

Deriving the Policy

• For any (optimal) value function, we can easily derive a policy that yields it:

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a), \forall s \in S$$

- Typically, during learning we want to balance exploration (random actions) and exploitation (greedy actions)
- We distinguish a target policy (what we wish to learn) and a behavior policy (how we collect experience)

On-Policy vs. Off-Policy

Sarsa (on-policy):

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

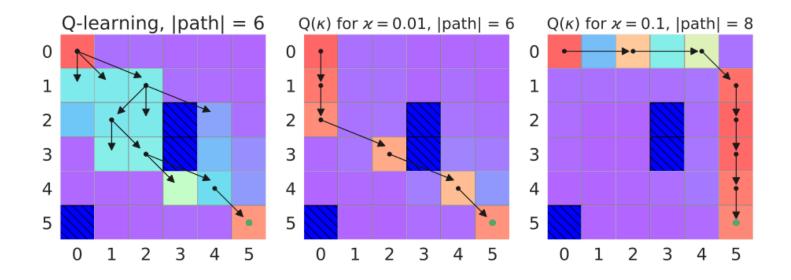
• Our idea in a nutshell: encode the expected probability (and model) of attacks or failures in the TD error δ_t .

• E.g., malicious attack with probability \varkappa :

$$\delta_{t} = r_{t+1} + \gamma \left((1 - \varkappa) \max_{a} Q(s_{t+1}, a) + \varkappa \min_{a} Q(s_{t+1}, a) \right) - Q(s_{t}, a_{t})$$

$$\uparrow$$
modified estimate of next state value

Results



For increasing attack probability *κ* we learn an increasingly safe policy

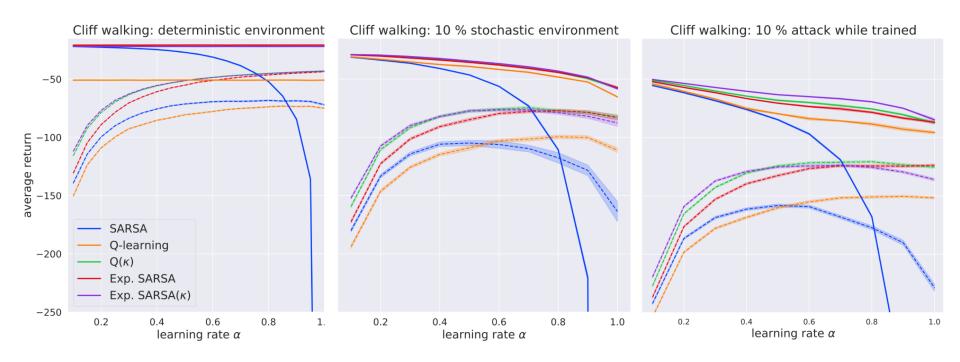
κ -methods

We can easily build versions of standard TD methods based on this idea.

- Modified TD update rule: $Q^{\pi}(s, a) \leftarrow Q^{\pi}(s, a) + \alpha \left[\underbrace{r + \gamma V^{\kappa}(s')}_{\text{target}} Q^{\pi}(s, a)\right]$
- **Q**(κ)-learning: $V^{\kappa}(s) = (1 \varkappa) \max_{a} Q(s, a) + \varkappa \min_{a} Q(s, a)$
- Expected Sarsa(κ): $V^{\kappa}(s) = (1 - \varkappa) \mathbb{E}_{a \sim \pi} \left[Q(s, a) \right] + \varkappa \min_{a} Q(s, a)$ $= (1 - \varkappa) \sum_{a} \pi(a|s) Q(s, a) + \varkappa \min_{a} Q(s, a)$
- General κ -model:

$$V^{\kappa}(s) = \sum_{\sigma \in C} p(\sigma|s) \sum_{a} \sigma(s, a) Q^{\pi}(s, a)$$

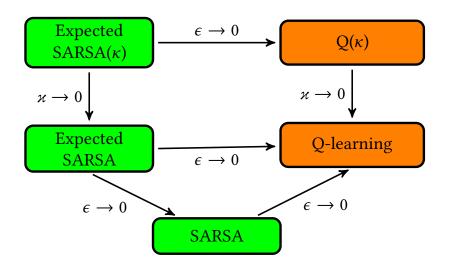
Results



 Our new methods (green and purple) outperform the original TD methods on which they are based

Theoretical Analysis

- We prove convergence of both Q(κ) and Expected SARSA(κ) to two different fixed points:
 - to the optimal value function Q^* of the original MDP in the limit where $\kappa \to 0$; and
 - to the optimal robust value function Q_{κ}^{\star} of the MDP that is generalized w.r.t. κ for constant parameter \varkappa .
- Note that *optimality* in this sense is purely induced by the relevant operator.



Conclusion

- κ-versions of standard TD methods learn a safer policy before experiencing the deviation
 - Especially beneficial in the early learning stage.
 - Robust against model mis-specification.

- Proven convergence to *optimal* value function.
- Promising empirical results in single- and multiagent settings.