Production Scheduling in an Industry 4.0 Era

Joost Berkhout (VU, CWI guest)

Eric Pauwels (IAS), Rob van der Mei (S), Wouter Berkelmans (S) & Sandjai Bhulai (VU) Public private partnership between:

ENGIE automates plants

Content Presentation

- Scheduling in animal-feed plants
- Research approach
- Results
- Concluding remarks

Scheduling in Animal-Feed Plants

- World-wide: 10¹² kg
- **120** plants in Holland
- Production aspects:
 - Customer order due dates
 - Contamination
 - Changeover times
 -

Production Scheduling Problem

Trends: 'big data' & mass-customization (industry 4.0)

Goal: How to efficiently schedule orders to meet due dates?

Current situation: planners 'schedule by hand' ...

As a result: time-consuming and opportunity loss (inflexible and 'big data' unused)

Research Approach:

MILP solving strategies:

For **small** instances:

(max. 3 hour time horizon)

For example: only consider schedules that produce roughly in order of the customer order due dates

For medium instances:

(max. 6 hour time horizon)

GUROBI - "Common sense"

For large instances:

(> 6 hour time horizon)

Evolutionary computing on bottleneck production area*

* By extending the ideas from "Expanding from Discrete Cartesian to Permutation Gene-pool Optimal Mixing Evolutionary Algorithms" from Bosman et al. (2016) to flexible flowshops

Results:

Example of a realized schedule:

Optimized schedule:

Solved for 180 seconds, 23 minutes earlier finished (7.5%)

Results (Efficiency Gain):

Comparison to realized schedules for 267 instances (5h) when solving for 180 seconds (all found schedules respect the due dates)

Concluding Remarks

- Model is implemented in a pilot plant in Limburg (for testing w.r.t. accuracy and optimization gain)
- Further research:
 - Model extension (transport and finished product silos)
 - Further development of (tailored) heuristics
 - Taking stochastic nature into account:
 - Robust optimization
 - Efficient rescheduling (emergency order, machine breakdown)

Thanks for your attention!

Any questions?

Mail: j2.berkhout@vu.nl

