

Cloud-aware programming

Nikolaos Bezirgiannis
CWI, Formal Methods

October 3, 2014

What is the Cloud?

What is the Cloud?

What is the Cloud?

What is the Cloud?

Why use the Cloud?

● Main reason:
– More attractive economic model

● Elasticity
– The ability of the Cloud to scale its resources

based on the current demand.
● Free unused resources and pay less.

Elasticity Example

Elasticity Example

Scale Up/Down

Elasticity Example

Scale Up/Down

Elasticity Example

Scale Out/In

5 Technologies
for Elasticity

This talk

Technology #1

IT Operator/Administrator

Technology #1

IT Operator/Administrator

Technology #1

Does not scale well
Also humans are prone to errors!

Software to manage software

Technology #2
Load balancing

● Ancient technology but well-established

Customers
Requests

...

...

Technology #3
Cloud orchestration

● A central controller that (optimally) arranges the applications
onto the cloud resources

● Upside
– static analysis & dynamic monitoring

● Downside
– Single point of failure

– Difficult to describe custom intelligence of elasticity

● Example software:
– Ubuntu Juju

– OpenStack Heat

Technology #4
Platform-as-a-Service (PaaS)

MyCompanyApp.java

Technology #4
Platform-as-a-Service (PaaS)

MyCompanyApp.java

Technology #4
Platform-as-a-Service (PaaS)

MyCompanyApp.java

Technology #4
Platform-as-a-Service (PaaS)

● Promising technology
● Example software/providers

– Jelastic

– CloudFoundry

– Amazon ElasticBeansTalk

● Downside:
– The technology does not scale out easily

– Can be hard to migrate to different cloud provider

Our technology #5

● ABS programming language
– Executable modeling language

– Functional with Object-oriented charachteristics

– Cooperative scheduling with asynchronous methods

– Distributed programming, targeted specifically for the cloud

● Result of the Envisage European Project

Example snippet of ABS

DC dc1 = new DC (CPU(3) , MEM(8192)) ;

dcs = Cons(dc1, dcs);

Fut<List<Load>> avgs = map_load(dcs);

dc1 ! shutdown ();

Example (continued)

Interf1 o1 = dc1 spawns Cls1 (params ..);

o1 ! method1 (params ..); // asynchronous

this . method2 (o1); // synchronous

Obstacle: Different cloud
vendors

Solution: Unify Cloud interfaces

Existing solutions:
Apache jclouds, Redhat deltacloud
We use our own custom tool written in Haskell

Our Technology #5

● Upside
– No single point of failure

– Programmatically engineer the logic of elasticity
and provisioning

– Can include more elasticity metrics than system load

● Downside
– Have to use our own ABS language

– Unattractive to non-programmers?

Future Work

● Simulation of varying cloud deployments
● Incorporte Service-Level Agreements (SLA)

– Static analysis

– Monitoring

Links

● http://envisage-project.eu
● https://github.com/bezirg/abs2haskell

http://envisage-project.eu/
https://github.com/bezirg/abs2haskell

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

