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Why use the Cloud?

● Main reason:
– More attractive economic model

● Elasticity
– The ability of the Cloud to scale its resources 

based on the current demand.
● Free unused resources and pay less.



  

Elasticity Example
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Elasticity Example

Scale Out/In



  

5 Technologies
for Elasticity

This talk



  

Technology #1

IT Operator/Administrator
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Technology #1

Does not scale well
Also humans are prone to errors!



  

Software to manage software



  

Technology #2
Load balancing

● Ancient technology but well-established

Customers
Requests

...

...



  

Technology #3
Cloud orchestration

● A central controller that (optimally) arranges the applications 
onto the cloud resources

● Upside
– static analysis & dynamic monitoring

● Downside
– Single point of failure

– Difficult to describe custom intelligence of elasticity

● Example software: 
– Ubuntu Juju

– OpenStack Heat



  

Technology #4
Platform-as-a-Service (PaaS)

MyCompanyApp.java
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Technology #4
Platform-as-a-Service (PaaS)

● Promising technology
● Example software/providers

– Jelastic

– CloudFoundry

– Amazon ElasticBeansTalk

● Downside:
– The technology does not scale out easily

– Can be hard to migrate to different cloud provider 



  

Our technology #5

● ABS programming language 
– Executable modeling language

– Functional with Object-oriented charachteristics

– Cooperative scheduling with asynchronous methods

– Distributed programming, targeted specifically for the cloud

● Result of the Envisage European Project



  

Example snippet of ABS

DC dc1 = new DC (CPU(3) , MEM(8192))  ;

dcs = Cons(dc1, dcs);

Fut<List<Load>> avgs = map_load(dcs);

dc1 ! shutdown ();



  

Example (continued)

Interf1 o1 = dc1 spawns Cls1 ( params ..);

o1 ! method1 ( params ..);  // asynchronous

this . method2 ( o1 );  // synchronous



  

Obstacle: Different cloud
vendors



  

Solution: Unify Cloud interfaces

Existing solutions: 
Apache jclouds, Redhat deltacloud
We use our own custom tool written in Haskell



  

Our Technology #5

● Upside
– No single point of failure

– Programmatically engineer the logic of elasticity 
and provisioning

– Can include more elasticity metrics than system load

● Downside
– Have to use our own ABS language

– Unattractive to non-programmers?



  

Future Work

● Simulation of varying cloud deployments
● Incorporte Service-Level Agreements (SLA)

– Static analysis

– Monitoring



  

Links

● http://envisage-project.eu
● https://github.com/bezirg/abs2haskell

http://envisage-project.eu/
https://github.com/bezirg/abs2haskell
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