An empirical study of the loss surface of neural networks

Anastasia Borovykh

CWI Amsterdam

CWI Scientific Meeting

(□ ▶ ◀ 圖 ▶ ◀ 圖 ▶ ◀ 圖 ▶ ○ ① 1/17

Anastasia Borovykh

Quick reminder: Neural networks

▶ Neural network computes $y_j = \phi\left(\sum_{i=1}^{M} w_{j,i} x_i + \theta\right)$, where $w_{i,j}$ is the weight, θ the bias and $\phi(\cdot)$ the activation function.

Anastasia Borovykh

Quick reminder: Neural networks

- Role of the layers: in each layer the network transforms the data, creating a new representation. Each layer stretches and squishes space but preserves topological properties. Number of layers needed depends on how 'entangled' the data is.
- Role of the weights: a linear transformation of the input by weight matrix W
- Role of the bias: provides each node with a trainable constant, allows to shift the activation function to the left or right to make prediction fit better
- ▶ Role of the activation function: pointwise application of non-linearity, e.g. sigmoid activation φ(x) = 1/(1 + e^{-x}) squashes output into range [0, 1], ReLU φ(x) = max(0, x) caps output at zero

CWI Amsterdam

The loss surface

• Given a training set of input vectors x_i , i = 1, ..., N and targets y_i . Find **w** to minimize a loss function e.g.

$$E(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (y(x_i, \mathbf{w}) - y_i)^2.$$

- When training a neural network we want to obtain minima that perform well on unseen data, i.e. that generalize well without overfitting on the noise in the train dataset.
- Financial data has lots of noise, heavy tails, non-linear dependencies; we do not want to overfit on the noise.
- Two definitions we will use:
 - Critical point: a point where the derivatives are zero; in our case also a point to which our optimisation algorithm has converged.
 - ▶ Index: the number of negative eigenvalues of the Hessian matrix; an index k < N there are k directions pointing down and N k pointing up.

The loss surface

This loss function defines a multi-dimensional loss surface over the weights (a 3D plot):

Depends on: number of layers, number of nodes per layer, activation function, loss function.

Some properties of the loss surface

- Highly non-convex and depends on a large number of parameters
- Despite the non-convexity relatively easy to train: could mean that all local minima/saddle points are of good quality?
- ▶ As size increases, more saddle points than local minima
- Neural networks are extremely flexible; can fit almost any function (universal approximation theorem)
- Global minima typically overfit
- Question 1: How does the loss surface of neural networks look?

CWI Amsterdam

• Question 2: How do we find *good* minima that generalize well?

Relating the loss surface to a Gaussian random field

- Based on [Choromanska, 2015]
- ▶ The output of a neural network with non-linearity $f(\cdot)$ is given by

$$y(\mathbf{w}, x) = qf(w^{(L)}f(w^{(L-1)}\dots f(w^{(1)}x)))\dots),$$

with q some scaling factor.

- Let the non-linear activation function be the rectified linear unit $f(x) = \max(x, 0)$.
- ▶ Replace the activation function with the term A_{i,j} ∈ {0,1} denoting whether a path (i, j) is active.
- ▶ We then obtain,

$$y(\mathbf{w}, x) = q \sum_{i=1}^{n_0} \sum_{j=1}^{P} x_i A_{i,j} \prod_{k=1}^{L} w_{i,j}^{(k)},$$

with $P := n_0 n_1 \dots n_L$ the number of paths from a given input to networks output.

Anastasia Borovykh

Relating the loss surface to a Gaussian random field

- We now make the first key assumption that each path is equally likely to be active and follows a Bernoulli distribution with probability *ρ*, independent of the input.
- ▶ We then obtain,

$$\mathbb{E}[y(\mathbf{w},x)|x] = q \sum_{i=1}^{n_0} x_i \rho \prod_{k=1}^{L} w_{i,j}^{(k)}.$$

- Note: this expression is thus similar to a deep *linear* model, multiplied by the factor ρ.
- Second key assumption is to let the input be sampled independently as $x_i \sim \mathcal{N}(0, 1)$.
- Since we sum over i.i.d. normally distributed terms, the expected output is a Gaussian process with state space being the high-dimensional weight space [w⁽¹⁾, ..., w^(L)] ∈ ℝ^{(n₀ × n₁)×···×(n_(L-1)×n_(L)).}

Gaussian random field on high dimensions

The authors of [Bray, Dean (2007)] give a result on the number of critical points for N-dimensional Gaussian process f. As $N \to \infty$ there is:

- ▶ a certain structure of critical points,
- critical points whose error is much larger than the global minimum are exponentially likely to be high-index saddle points,
- ▶ all actual local minima are at an energy level close to that of the global minimum,
- there is thus a strong correlation between the error and the index: the larger the error the larger the index,
- furthermore, as we will see later on, there are typically large plateaus around critical points, complicating optimizibility of the network.

Are neural networks like Gaussian random fields?

► Let us compute 50 minima of neural networks using stochastic gradient descent. We plot here the index vs. the loss level:

Figure: Right: 2 layers, 10 nodes per layer; left: 5 layers, 10 nodes per layer.

Width of the minima

- Generalisation: the ability of a network trained on the train dataset to perform good on the test dataset; i.e. its ability to perform well on unseen data.
- Measures how much a network has actually learned instead of simply fitted the noise.
- ▶ The authors of [Keskar et al., (2016)] showed that the width of the minima is a measure of the generalizibility.
- Intuitively, the wider a minimum the better its resistance to noisy transformations of the input data; still would give the same loss. In contrast, sharp minima are very sensitive to changes in the underlying data distribution.
- Other measures of generalizibility: the trace of the Hessian, indicates the flatness around a particular minimum. Low trace should give better generalizibility.

Width of the minima

We compute the trace and width (computed as the number of steps we can take in random directions without increasing the loss) for different network architectures.

N_{depth}	N_{width}	Average width	Tr(H) of best train	Tr(H) of best test
2	10	40	39 (test loss 0.295)	2.2 (test loss 0.251)
2	50	29	87 (test loss 0.313)	10 (test loss 0.258)
5	10	9	1171 (test loss 0.371)	0.25 (test loss 0.246)
5	50	4	29 (test loss 0.491)	288 (test loss 0.430)

We observe that

- Increasing the number of parameters in general seems to decrease the width of the minima (more overfitting)
- Minima that are able to generalize well have a much lower trace.
- The trace seems to be a good indicator for out-of-sample performance.

Width of the minima

▶ We plot the eigenvalue spectrum of minima that perform best on train set (blue) and test set (orange).

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10 nodes per layer

- We observe a large mode around zero, i.e. the minima found typically have large plateaus around them. This explains why SGD gets stuck in them.
- Minima that overfit have many more large, positive outlier eigenvalues.

A trading example

- ▶ We have trained a neural network on the S&P500 index data to predict the next-day return t + 1 (i.e. whether the price moves up or down) using K + 1 days of data in the past t K, ..., t
- Define a simple trading strategy; buy if price if predicted to go up, earning money if true price move is up; sell if price is predicted to go down, earning money if true price move is down.

CWI Amsterdam

A trading example

Train the network to find 50 minima, and construct the portfolio value of the resulting trading strategy on *unseen* data:

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10 nodes per layer

A trading example: which minima are good?

- Use the trace of the Hessian at the critical points found by our optimization.
- The trace of the Hessian gives *some* indication on the performance; but still other (not yet determined) factors have an influence too.

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10 nodes per layer

THANK YOU!

- * ロ ト * @ ト * 差 ト * 差 ト - 差 - のへの 17/1

Anastasia Borovykh