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Quick reminder: Neural networks

I Neural network computes yj = φ
(∑M

i=1 wj,ixi + θ
)
, where wi,j is

the weight, θ the bias and φ(·) the activation function.
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Quick reminder: Neural networks

I Role of the layers: in each layer the network transforms the data,
creating a new representation. Each layer stretches and squishes
space but preserves topological properties. Number of layers
needed depends on how ’entangled’ the data is.

I Role of the weights: a linear transformation of the input by weight
matrix W

I Role of the bias: provides each node with a trainable constant,
allows to shift the activation function to the left or right to make
prediction fit better

I Role of the activation function: pointwise application of
non-linearity, e.g. sigmoid activation φ(x) = 1/(1 + e−x) squashes
output into range [0, 1], ReLU φ(x) = max(0, x) caps output at zero
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The loss surface
I Given a training set of input vectors xi , i = 1, ...,N and targets yi .

Find w to minimize a loss function e.g.

E (w) =
1

2N

N∑
i=1

(y(xi ,w)− yi )
2.

I When training a neural network we want to obtain minima that
perform well on unseen data, i.e. that generalize well without
overfitting on the noise in the train dataset.

I Financial data has lots of noise, heavy tails, non-linear
dependencies; we do not want to overfit on the noise.

I Two definitions we will use:
I Critical point: a point where the derivatives are zero; in our case also

a point to which our optimisation algorithm has converged.
I Index: the number of negative eigenvalues of the Hessian matrix; an

index k < N there are k directions pointing down and N − k
pointing up.
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The loss surface

This loss function defines a multi-dimensional loss surface over the
weights (a 3D plot):

Depends on: number of layers, number of nodes per layer, activation
function, loss function.
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Some properties of the loss surface

I Highly non-convex and depends on a large number of parameters
I Despite the non-convexity relatively easy to train: could mean that

all local minima/saddle points are of good quality?
I As size increases, more saddle points than local minima
I Neural networks are extremely flexible; can fit almost any function

(universal approximation theorem)
I Global minima typically overfit
I Question 1: How does the loss surface of neural networks look?
I Question 2: How do we find good minima that generalize well?
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Relating the loss surface to a Gaussian random field
I Based on [Choromanska, 2015]
I The output of a neural network with non-linearity f (·) is given by

y(w, x) = qf (w (L)f (w (L−1) . . . f (w (1)x))) . . . ),

with q some scaling factor.
I Let the non-linear activation function be the rectified linear unit

f (x) = max(x , 0).
I Replace the activation function with the term Ai,j ∈ {0, 1}

denoting whether a path (i , j) is active.
I We then obtain,

y(w, x) = q
n0∑
i=1

P∑
j=1

xiAi,j

L∏
k=1

w
(k)
i,j ,

with P := n0n1 . . . nL the number of paths from a given input to
networks output.
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Relating the loss surface to a Gaussian random field
I We now make the first key assumption that each path is equally

likely to be active and follows a Bernoulli distribution with
probability ρ, independent of the input.

I We then obtain,

E[y(w, x)|x ] = q
n0∑
i=1

xiρ
L∏

k=1

w
(k)
i,j .

I Note: this expression is thus similar to a deep linear model,
multiplied by the factor ρ.

I Second key assumption is to let the input be sampled
independently as xi ∼ N (0, 1).

I Since we sum over i.i.d. normally distributed terms, the expected
output is a Gaussian process with state space being the
high-dimensional weight space
[w (1), ...,w (L)] ∈ R(n0×n1)×···×(n(L−1)×n(L)).
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Gaussian random field on high dimensions

The authors of [Bray, Dean (2007)] give a result on the number of
critical points for N -dimensional Gaussian process f .
As N →∞ there is:

I a certain structure of critical points,
I critical points whose error is much larger than the global minimum

are exponentially likely to be high-index saddle points,
I all actual local minima are at an energy level close to that of the

global minimum,
I there is thus a strong correlation between the error and the index:

the larger the error the larger the index,
I furthermore, as we will see later on, there are typically large

plateaus around critical points, complicating optimizibility of the
network.
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Are neural networks like Gaussian random fields?

I Let us compute 50 minima of neural networks using stochastic
gradient descent. We plot here the index vs. the loss level:

Figure: Right: 2 layers, 10 nodes per layer; left: 5 layers, 10 nodes per layer.
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Width of the minima

I Generalisation: the ability of a network trained on the train dataset
to perform good on the test dataset; i.e. its ability to perform well
on unseen data.

I Measures how much a network has actually learned instead of
simply fitted the noise.

I The authors of [Keskar et al., (2016)] showed that the width of the
minima is a measure of the generalizibility.

I Intuitively, the wider a minimum the better its resistance to noisy
transformations of the input data; still would give the same loss. In
contrast, sharp minima are very sensitive to changes in the
underlying data distribution.

I Other measures of generalizibility: the trace of the Hessian,
indicates the flatness around a particular minimum. Low trace
should give better generalizibility.
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Width of the minima

I We compute the trace and width (computed as the number of steps
we can take in random directions without increasing the loss) for
di�erent network architectures.

I We observe that
I Increasing the number of parameters in general seems to decrease

the width of the minima (more overfitting)
I Minima that are able to generalize well have a much lower trace.
I The trace seems to be a good indicator for out-of-sample

performance.
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Width of the minima
I We plot the eigenvalue spectrum of minima that perform best on

train set (blue) and test set (orange).

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10
nodes per layer

I We observe a large mode around zero, i.e. the minima found
typically have large plateaus around them. This explains why SGD
gets stuck in them.

I Minima that overfit have many more large, positive outlier
eigenvalues.
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A trading example

I We have trained a neural network on the S&P500 index data to
predict the next-day return t + 1 (i.e. whether the price moves up
or down) using K + 1 days of data in the past t − K , ..., t

I Define a simple trading strategy; buy if price if predicted to go up,
earning money if true price move is up; sell if price is predicted to
go down, earning money if true price move is down.
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A trading example
Train the network to find 50 minima, and construct the portfolio value
of the resulting trading strategy on unseen data:

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10 nodes
per layer
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A trading example: which minima are good?
I Use the trace of the Hessian at the critical points found by our

optimization.
I The trace of the Hessian gives some indication on the performance;

but still other (not yet determined) factors have an influence too.

Figure: Right: two layers and 10 nodes per layer; left: five layers and 10 nodes
per layer
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THANK YOU!
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