
Matrix factorization ranks: why do we want to
lower bound them?

Sander Gribling, CWI

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}

Aij = Tr
(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)

psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian
PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Matrix factorization ranks

Given A ∈ Rm×n
+ :

rank(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd with Aij = aT
i bj}

rank+(A) = min{d : a1, . . . , am, b1, . . . , bn ∈ Rd
+ with Aij = aT

i bj}
Aij = Tr

(
diag(ai)diag(bj)

)
psd-rank(A) = min{d : X1, . . . ,Xm,Y1, . . . ,Yn d × d Hermitian

PSD with Aij = Tr(XiYj)}

Motivation:

I linear/semidefinite extension complexity
[Yannakakis’91,Gouveia-Parrilo-Thomas’13]

I (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf’12]

I clustering (rank+ only)

Extension complexity

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}

︸ ︷︷ ︸
2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}︸ ︷︷ ︸

2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}︸ ︷︷ ︸

2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}

︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}︸ ︷︷ ︸

2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}︸ ︷︷ ︸

2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Bn
1 = {x ∈ Rn : ±x1 ± · · · ± xn ≤ 1}︸ ︷︷ ︸

2n inequalities

Qn = {(x , y) ∈ R2n :
n∑

i=1

yi = 1, −yi ≤ xi ≤ yi for i ∈ [n]}︸ ︷︷ ︸
2n inequalities

⇒ Bn
1 is the projection of an affine slice of Rk

+, where k = 2n.

I Smallest such k is the linear extension complexity of Bn
1

Extension complexity

Given a polytope

P = {(x1, . . . , xn) ∈ Rn : hi (x) ≥ 0 for i ∈ [f]}
= conv(p1, . . . , pv).

The slack matrix SP of P is

SP =
(
hj(pi)

)
∈ Rv×f

+

Theorem (Yannakakis ‘91)

rank+(SP) ≤ k ⇔ P is the projection of an affine slice of Rk
+.

Theorem (Gouveia-Parrilo-Thomas ‘13)

rankpsd(SP) ≤ k ⇔ P is the projection of an affine slice of Sk+.

Extension complexity

Given a polytope

P = {(x1, . . . , xn) ∈ Rn : hi (x) ≥ 0 for i ∈ [f]}
= conv(p1, . . . , pv).

The slack matrix SP of P is

SP =
(
hj(pi)

)
∈ Rv×f

+

Theorem (Yannakakis ‘91)

rank+(SP) ≤ k ⇔ P is the projection of an affine slice of Rk
+.

Theorem (Gouveia-Parrilo-Thomas ‘13)

rankpsd(SP) ≤ k ⇔ P is the projection of an affine slice of Sk+.

Extension complexity

Given a polytope

P = {(x1, . . . , xn) ∈ Rn : hi (x) ≥ 0 for i ∈ [f]}
= conv(p1, . . . , pv).

The slack matrix SP of P is

SP =
(
hj(pi)

)
∈ Rv×f

+

Theorem (Yannakakis ‘91)

rank+(SP) ≤ k ⇔ P is the projection of an affine slice of Rk
+.

Theorem (Gouveia-Parrilo-Thomas ‘13)

rankpsd(SP) ≤ k ⇔ P is the projection of an affine slice of Sk+.

Extension complexity

Given a polytope

P = {(x1, . . . , xn) ∈ Rn : hi (x) ≥ 0 for i ∈ [f]}
= conv(p1, . . . , pv).

The slack matrix SP of P is

SP =
(
hj(pi)

)
∈ Rv×f

+

Theorem (Yannakakis ‘91)

rank+(SP) ≤ k ⇔ P is the projection of an affine slice of Rk
+.

Theorem (Gouveia-Parrilo-Thomas ‘13)

rankpsd(SP) ≤ k ⇔ P is the projection of an affine slice of Sk+.

Extension complexity

Given a polytope

P = {(x1, . . . , xn) ∈ Rn : hi (x) ≥ 0 for i ∈ [f]}
= conv(p1, . . . , pv).

The slack matrix SP of P is

SP =
(
hj(pi)

)
∈ Rv×f

+

Theorem (Yannakakis ‘91)

rank+(SP) ≤ k ⇔ P is the projection of an affine slice of Rk
+.

Theorem (Gouveia-Parrilo-Thomas ‘13)

rankpsd(SP) ≤ k ⇔ P is the projection of an affine slice of Sk+.

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d

∑
θ∈Θ θ

Tr(E j
θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d

∑
θ∈Θ θ

Tr(E j
θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d

∑
θ∈Θ θ

Tr(E j
θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d
∑

θ∈Θ θ

Tr(E j
θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d

∑
θ∈Θ θTr(E j

θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d

∑
θ∈Θ θTr(E j

θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Quantum Communication complexity: Aij in expectation

i j

Aij = Tr(
(∑

θ∈Θ θE j
θ

)
ρi)

psd-rank(A) ≈ min d
∑

θ∈Θ θTr(E j
θρi)

ρi ∈ Cd×d

Measure with {E j
θ}θ∈Θ

Clustering

features︷ ︸︸ ︷ k︷ ︸︸ ︷

data

=

aTi

()

⇒ assign i to cluster c corresponding to largest component of ai

Clustering

features︷ ︸︸ ︷

k︷ ︸︸ ︷

data

=

aTi

()

⇒ assign i to cluster c corresponding to largest component of ai

Clustering

features︷ ︸︸ ︷ k︷ ︸︸ ︷

data

=

aTi

()

⇒ assign i to cluster c corresponding to largest component of ai

Clustering

features︷ ︸︸ ︷ k︷ ︸︸ ︷

data

=

aTi

()

⇒ assign i to cluster c corresponding to largest component of ai

Clustering

features︷ ︸︸ ︷ k︷ ︸︸ ︷

data

=

aTi

()

⇒ assign i to cluster c corresponding to largest component of ai

How to compute these ranks?

I Difficult (NP-hard)
I Lower bounds via semidefinite programming

I (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573

How to compute these ranks?

I Difficult (NP-hard)

I Lower bounds via semidefinite programming
I (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573

How to compute these ranks?

I Difficult (NP-hard)
I Lower bounds via semidefinite programming

I (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573

How to compute these ranks?

I Difficult (NP-hard)
I Lower bounds via semidefinite programming

I (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573

How to compute these ranks?

I Difficult (NP-hard)
I Lower bounds via semidefinite programming

I (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573

