Matrix factorization ranks: why do we want to lower bound them?

Sander Gribling, CWI

Given $A \in \mathbb{R}^{m \times n}_+$:

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^T b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^T b_j\}$

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T}b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^\mathsf{T}b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$

Given
$$A \in \mathbb{R}_{+}^{m \times n}$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T}b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}_{+}^d \text{ with } A_{ij} = a_i^\mathsf{T}b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$
psd-rank $(A) = \min\{d : X_1, \dots, X_m, Y_1, \dots, Y_n \ d \times d \text{ Hermitian}$
PSD with $A_{ij} = \operatorname{Tr}(X_i Y_j)\}$

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$
psd-rank $(A) = \min\{d : X_1, \dots, X_m, Y_1, \dots, Y_n \ d \times d \text{ Hermitian}$
PSD with $A_{ij} = \operatorname{Tr}(X_i Y_j)\}$

Motivation:

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$
psd-rank $(A) = \min\{d : X_1, \dots, X_m, Y_1, \dots, Y_n \ d \times d \text{ Hermitian}$
PSD with $A_{ij} = \operatorname{Tr}(X_i Y_j)\}$

Motivation:

 linear/semidefinite extension complexity [Yannakakis'91,Gouveia-Parrilo-Thomas'13]

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$
psd-rank $(A) = \min\{d : X_1, \dots, X_m, Y_1, \dots, Y_n \ d \times d \text{ Hermitian}$
PSD with $A_{ij} = \operatorname{Tr}(X_i Y_j)\}$

Motivation:

- linear/semidefinite extension complexity [Yannakakis'91,Gouveia-Parrilo-Thomas'13]
- (quantum) communication complexity
 [Fiorini-Massar-Pokutta-Tiwary-de Wolf'12]

Given
$$A \in \mathbb{R}^{m \times n}_+$$
:
rank $(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
rank $_+(A) = \min\{d : a_1, \dots, a_m, b_1, \dots, b_n \in \mathbb{R}^d_+ \text{ with } A_{ij} = a_i^\mathsf{T} b_j\}$
 $A_{ij} = \operatorname{Tr}\left(\operatorname{diag}(a_i)\operatorname{diag}(b_j)\right)$
psd-rank $(A) = \min\{d : X_1, \dots, X_m, Y_1, \dots, Y_n \ d \times d \text{ Hermitian}$
PSD with $A_{ij} = \operatorname{Tr}(X_i Y_j)\}$

Motivation:

- linear/semidefinite extension complexity [Yannakakis'91,Gouveia-Parrilo-Thomas'13]
- (quantum) communication complexity [Fiorini-Massar-Pokutta-Tiwary-de Wolf'12]
- clustering (rank₊ only)

$B_1^n = \{x \in \mathbb{R}^n : \pm x_1 \pm \cdots \pm x_n \le 1\}$

$$B_1^n = \{x \in \mathbb{R}^n : \underbrace{\pm x_1 \pm \cdots \pm x_n \leq 1}_{2^n \text{ inequalities}}\}$$

$$B_1^n = \{ x \in \mathbb{R}^n : \underbrace{\pm x_1 \pm \cdots \pm x_n \leq 1}_{2^n \text{ inequalities}} \}$$

$$Q_n = \{(x, y) \in \mathbb{R}^{2n} : \sum_{i=1}^n y_i = 1, -y_i \le x_i \le y_i \text{ for } i \in [n]\}$$

$$B_1^n = \{x \in \mathbb{R}^n : \underbrace{\pm x_1 \pm \dots \pm x_n \leq 1}_{2^n \text{ inequalities}}\}$$
$$Q_n = \{(x, y) \in \mathbb{R}^{2n} : \sum_{i=1}^n y_i = 1, \quad \underbrace{-y_i \leq x_i \leq y_i \text{ for } i \in [n]}_{2n \text{ inequalities}}\}$$

$$B_1^n = \{x \in \mathbb{R}^n : \underbrace{\pm x_1 \pm \dots \pm x_n \leq 1}_{2^n \text{ inequalities}}\}$$
$$Q_n = \{(x, y) \in \mathbb{R}^{2n} : \sum_{i=1}^n y_i = 1, \quad \underbrace{-y_i \leq x_i \leq y_i \text{ for } i \in [n]}_{2n \text{ inequalities}}\}$$

 $\Rightarrow B_1^n$ is the projection of an affine slice of \mathbb{R}^k_+ , where k = 2n.

$$B_1^n = \{x \in \mathbb{R}^n : \underbrace{\pm x_1 \pm \dots \pm x_n \leq 1}_{2^n \text{ inequalities}}\}$$
$$Q_n = \{(x, y) \in \mathbb{R}^{2n} : \sum_{i=1}^n y_i = 1, \quad \underbrace{-y_i \leq x_i \leq y_i \text{ for } i \in [n]}_{2n \text{ inequalities}}\}$$

⇒ B₁ⁿ is the projection of an affine slice of ℝ^k₊, where k = 2n.
▶ Smallest such k is the linear extension complexity of B₁ⁿ

Given a polytope

$$P = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : h_i(x) \ge 0 \text{ for } i \in [f]\}$$

= conv(p_1, \ldots, p_v).

Given a polytope

$$P = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : h_i(x) \ge 0 \text{ for } i \in [f]\}$$

= conv(p_1, \ldots, p_v).

The slack matrix S_P of P is

Given a polytope

$$P = \{(x_1, \dots, x_n) \in \mathbb{R}^n : h_i(x) \ge 0 \text{ for } i \in [f]\}$$

= conv(p_1, \dots, p_v).

The slack matrix S_P of P is

$$S_P = (h_j(p_i)) \in \mathbb{R}^{v \times f}_+$$

Given a polytope

$$P = \{(x_1, \dots, x_n) \in \mathbb{R}^n : h_i(x) \ge 0 \text{ for } i \in [f]\}$$

= conv(p₁, ..., p_v).

The slack matrix S_P of P is

$$S_P = (h_j(p_i)) \in \mathbb{R}^{v \times f}_+$$

Theorem (Yannakakis '91) rank₊(S_P) $\leq k \Leftrightarrow P$ is the projection of an affine slice of \mathbb{R}_+^k .

Given a polytope

$$P = \{(x_1, \dots, x_n) \in \mathbb{R}^n : h_i(x) \ge 0 \text{ for } i \in [f]\}$$

= conv(p₁, ..., p_v).

The slack matrix S_P of P is

$$S_P = (h_j(p_i)) \in \mathbb{R}^{v \times f}_+$$

Theorem (Yannakakis '91) $\operatorname{rank}_+(S_P) \leq k \Leftrightarrow P$ is the projection of an affine slice of \mathbb{R}^k_+ . Theorem (Gouveia-Parrilo-Thomas '13) $\operatorname{rank}_{psd}(S_P) \leq k \Leftrightarrow P$ is the projection of an affine slice of S^k_+ .

 \Rightarrow assign *i* to cluster *c* corresponding to largest component of a_i

Difficult (NP-hard)

- Difficult (NP-hard)
- Lower bounds via semidefinite programming

- Difficult (NP-hard)
- Lower bounds via semidefinite programming
 - (Noncommutative) polynomial optimization (with a twist)

- Difficult (NP-hard)
- Lower bounds via semidefinite programming
 - (Noncommutative) polynomial optimization (with a twist)

arXiv:1708.01573