Matrix factorization ranks: why do we want to
lower bound them?

Sander Gribling, CWI

E Centrum Wiskunde & Informatica



Matrix factorization ranks

Given A € RT*™



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}

Aj=Tr (diag(a,-)diag(bj)>



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}
Aj=Tr (diag(a,-)diag(bj)>
psd-rank(A) = min{d : X1,..., Xm, Y1,..., Yn d x d Hermitian
PSD with A; = Tr(X;Y))}



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}
Aj=Tr (diag(a,-)diag(bj)>
psd-rank(A) = min{d : X1,..., Xm, Y1,..., Yn d x d Hermitian
PSD with A; = Tr(X;Y))}

Motivation:



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}
Aj=Tr (diag(a,-)diag(bj)>
psd-rank(A) = min{d : X1,..., Xm, Y1,..., Yn d x d Hermitian
PSD with A; = Tr(X;Y))}

Motivation:

» linear/semidefinite extension complexity
[Yannakakis'91,Gouveia-Parrilo-Thomas'13]



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}
Aj=Tr (diag(a;)diag(bj)>
psd-rank(A) = min{d : X1,..., Xm, Y1,..., Yn d x d Hermitian
PSD with A; = Tr(X;Y))}

Motivation:

» linear/semidefinite extension complexity
[Yannakakis'91,Gouveia-Parrilo-Thomas'13]

» (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf'12]



Matrix factorization ranks

Given A € RT*™
rank(A) =min{d: a1,...,am, b1,..., b, € R? with Aj = a] bj}
rank(A) = min{d : a1,...,am, b1,..., b,y € Ri with A; = al b;}
Aj=Tr (diag(a;)diag(bj)>
psd-rank(A) = min{d : X1,..., Xm, Y1,..., Yn d x d Hermitian
PSD with A; = Tr(X;Y))}

Motivation:

» linear/semidefinite extension complexity
[Yannakakis'91,Gouveia-Parrilo-Thomas'13]

» (quantum) communication complexity
[Fiorini-Massar-Pokutta-Tiwary-de Wolf'12]

» clustering (rank, only)
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2n inequalities

= BJ' is the projection of an affine slice of ]Ri, where k = 2n.

» Smallest such k is the linear extension complexity of B}
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(

Theorem (Gouveia-Parrilo-Thomas ‘13)
rank,sq(Sp) < k < P is the projection of an affine slice of SX.
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Quantum Communication complexity: A;; in expectation
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Ajj = Tr((Zeee 955) pi) ‘I'
psd-rank(A) ~ min d S oeo 0TE(Ep))



Clustering




Clustering

features

data




Clustering

features

data




Clustering

features k

i
data = (




Clustering

features k

1 C )

= assign i to cluster ¢ corresponding to largest component of a;
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