
DuckDB - 
The SQLite for Analytics

Mark Raasveldt & Hannes Mühleisen



about:me

▸ Postdoc in Database Architectures group 

▸ Before that: PhD student 

▸ Before that: Master student 

▸ I like the CWI  

▸ I like databases

about:me


Relational DBMS

▸ In our group we work on RDBMS 

▸ Relational DataBase Management Systems 

▸ Many of you have probably used a RDBMS 

▸ Taught in schools, used everywhere



Relational DBMS

▸ RDBMS have been around forever (in CS terms) 

▸ 1970: Edgar F. Codd presented the relational 
model



Relational DBMS

▸ 1974:



Relational DBMS

▸ That’s it! 

▸ Since 1974 little has changed: 

▸ SQL/relational model are still used everywhere 

▸ What have database researchers been doing!?



Relational DBMS

▸ SQL is declarative 

▸ You describe what you want to see 

▸ Not how to get the data 

▸ DBMS decides the best way of answering queries



Relational DBMS

▸ While SQL has not changed, DBMS have! 

▸ Database community has been optimizing these 
systems for half a century 

▸ Original DBMS were made for computers with 
kilobytes of memory 

▸ Modern DBMS are made for computers with 
terabytes of memory (or clusters of computers)



Data Science

▸ Data has been getting increasingly hyped/popular 

▸ Main reason: storing/analyzing data is cheap now 

▸ You can store and analyze gigabytes on standard 
laptops/desktops

0.0001

0.01

1

100

10000

1960 1970 1980 1990 2000 2010 2019
Year

Pr
ic

e 
($

/M
B

)

Hard disk prices over time



Data Science

▸ This new trend is called data science 

▸ Overloaded term 

▸ Data science = Statistics on a macbook



Data Science

▸ Data Scientists work with data 

▸ Our field: 50+ years perfecting RDBMS 

▸ Obviously they use RDBMS! 

▸ … right?



Data Science

▸ No! 

▸ They use them if forced… 

▸ Data is in a RDBMS 

▸ Prefer to avoid using them



Data Science

“If your data fits in memory there is no 
advantage to putting it in a database: it 
will only be slower and more frustrating” 
- Hadley Wickham



Data Science

▸ Maybe they just don’t need RDBMS 
technology 

▸What do data scientists actually use?



Data Science

[1] https://www.jetbrains.com/research/python-developers-survey-2018/

Data Wrangling

Plotting

Analysis 
Classification 
ML



Data Science

Data Wrangling

Plotting

Development



Data Science

▸What do pandas, NumPy, dplyr, tibble and 
data.table have in common? 

▸ They perform database operations 

▸ Joins, aggregates, basic data transformations, 
filters, etc. 

▸ Data scientists need RDBMS functionality!



Data Science

▸ Let’s go back to Hadley’s quote 

▸Why does he think that? 

▸ We have been optimizing them for 50 years!

“If your data fits in memory there is no 
advantage to putting it in a database: it 
will only be slower and more frustrating” 
- Hadley Wickham



Data Science Workflow

▸ Let’s run a data science workflow 

▸With and without a database system 

▸ And see what happens!



Data Science Workflow

▸ Data Science Workflow 

▸ Load data from CSV file 

▸ Perform preprocessing 

▸ ETL: Extract Transform Load 

▸ Run analysis



Data Science Workflow

▸ Our example: 

▸ Voter data from North Carolina 

▸ 360MB in CSV format 

▸ Preprocessing: 

▸ Remove entries with missing phone 
number or house number 

▸ Compute correlation between phone 
number and house number



Data Science Workflow

▸ Pure R 

▸ First, install required packages:

install.packages(c("data.table", "dplyr")) 



▸ Pure R 

▸ Then run the analysis

# load data from CSV file 
ncvoter <- fread('ncvoter.csv', sep='\t') 
# filter entries with missing phone/house number 
ncvoter %>% filter(!is.na(phone_num), !
is.na(house_num)) -> ncvoter_filtered 
# perform the correlation 
cor(ncvoter_filtered[['phone_num']], 
ncvoter_filtered[['house_num']]) 

Data Science Workflow

[1] -0.002638091



Data Science Workflow

▸ PostgreSQL 

▸ Install the database server 

▸ Not trivial without package manager! 

▸ Download sources and compile

$ export PGDATA=ncvoters 
$ initdb 
$ pg_ctl -D ncvoterdb -l logfile start



Data Science Workflow

▸ PostgreSQL 

▸ Next up: install client

install.packages("RPostgres") 



Data Science Workflow

▸ PostgreSQL 

▸ That didn't work 

▸ Need server installed and in PATH to run 
client



Data Science Workflow

▸ PostgreSQL

library(RPostgres) 

con <- DBI::dbConnect(RPostgres::Postgres(), host='localhost', 
dbname='postgres') 
dbSendQuery(con, "CREATE TABLE ncvoters(...);") 
dbSendQuery(con, paste0("COPY ncvoters FROM '", getwd(), "/", 
"ncvoter.csv' (FORMAT 'csv', DELIMITER '|', QUOTE '\"', NULL '')")) 
dbSendQuery(con, "DELETE FROM ncvoters WHERE phone_num IS NULL OR 
house_num IS NULL") 
ncvoter_filtered <- dbReadTable(con, "ncvoters") 
cor(ncvoter_filtered[['phone_num']], ncvoter_filtered[['house_num']])



Data Science Workflow



Data Science Workflow

▸ Hadley is right 

▸ For data science workflows, database 
system are frustrating and slow 

▸What are the problems? 

▸ How can we fix them?



RDBMS Problems

▸ Problems 

▸ Difficult to install 

▸ Difficult to setup/maintain 

▸ Slow data transfer to/from client 

▸ Poor interface with client application 

▸ External state: cannot copy/paste!



RDBMS Problems

▸ Client/Server Architecture 

▸ Good for multiple users/separate machine 

▸ Pointless for single-user 

▸ Makes install/setup much more difficult



RDBMS Problems

▸ Installation needs to be easy 

▸ pip install for python 

▸ install.packages for R



RDBMS Problems

▸ Transfer efficiency is crucial 

▸ SQL is not sufficient for data science 

▸ Data scientists use R/Python packages 

▸ Connectors not built for  
bulk transfer

Don’t Hold My Data Hostage 
A Case For Client Protocol Redesign 

VLDB2017



RDBMS Problems

▸ SQL is a nice language… 

▸ But not as interface for clients! 

▸ Embedding SQL as strings is unnatural 

▸ No syntax highlighting 

▸Whole class of security vulnerabilities: 

▸ SQL injection



RDBMS Problems

▸ SQL as a string is not easily composable 

▸ dplyr allows us to chain operations: 

▸ Easily inspect intermediates:

ncvoter %>%  
filter(!is.na(phone_num), !is.na(house_num)) %>% 
select(phone_num+1)  

ncvoter %>%  
filter(!is.na(phone_num), !is.na(house_num)) %>% 
head 



RDBMS Problems

▸ SQL: temporary tables

dbSendQuery(con, "CREATE TEMPORARY TABLE 
ncvoters_filtered AS SELECT * FROM ncvoters WHERE 
phone_num IS NULL OR house_num IS NULL") 
dbGetQuery(con, "SELECT * FROM ncvoters_filtered 
LIMIT 10") 



library(data.table) 
library(dplyr) 

# load data from CSV file 
ncvoter <- fread('ncvoter.csv', sep='\t') 
# filter entries with missing phone/house number 
ncvoter %>% filter(!is.na(phone_num), !
is.na(house_num)) -> ncvoter_filtered 
# perform the correlation 
cor(ncvoter_filtered[['phone_num']], 
ncvoter_filtered[['house_num']]) 

RDBMS Problems

▸ Cannot copy/paste!



RDBMS Problems

▸ Cannot copy/paste!

library(RPostgres) 

con <- DBI::dbConnect(RPostgres::Postgres(), host='localhost', 
dbname='postgres') 
dbSendQuery(con, "CREATE TABLE ncvoters(...);") 
dbSendQuery(con, paste0("COPY ncvoters FROM '", getwd(), "/", 
"ncvoter.csv' (FORMAT 'csv', DELIMITER '|', QUOTE '\"', NULL '')")) 
dbSendQuery(con, "DELETE FROM ncvoters WHERE phone_num IS NULL OR 
house_num IS NULL") 
ncvoter_filtered <- dbReadTable(con, "ncvoters") 
cor(ncvoter_filtered[['phone_num']], ncvoter_filtered[['house_num']])



RDBMS Problems

▸ Current RDBMS are not a good fit for data 
science 

▸Why do we (database researchers) care?



RDBMS Problems

▸ Data science is popular 

▸ Popular = money $$



RDBMS Problems

▸ Data scientists are re-inventing RDBMS 

▸ Poorly! 

▸ No optimizers 

▸ Huge intermediates 

▸ No out-of-memory computation 

▸ No parallelism 

▸ No scalability



RDBMS Problems

▸ RDBMS can solve all of these problems 

▸ And more! 

▸ Current RDBMS are “slow and frustrating” 

▸ But they don’t need to be!



an Embeddable Analytical RDBMS



DuckDB

▸ Why “Duck” DB? 

▸ Hannes used to own a pet duck



DuckDB

▸ DuckDB: The SQLite for Analytics 

▸ Core Features 

▸ Simple installation 

▸ Embedded: no server management 

▸ Single file storage format 

▸ Fast analytical processing 

▸ Fast transfer between R/Python and RDBMS



DuckDB

▸ Simple Installation & Usage 

▸ Many lessons learned from SQLite 

▸ Embedded system 

▸ Zero external dependencies 

▸ All dependencies are inlined 

▸ Amalgamation (duckdb.cpp & duckdb.hpp) 

▸ Integrated into package managers: 

▸ pip install duckdb 
install.packages(“duckdb”)



DuckDB

▸ Simple Installation & Usage 

▸ DuckDB does not rely on any external state 

▸ e.g. separate config files, environment variables 

▸ Single-File Storage Format 

▸ Files are easier to handle for users than directories 

▸ See: Microsoft Office



DuckDB

▸ Composable Interface

import duckdb 

# open database file 
db = duckdb.open('cities.db') 

# filter on cities with a high population 
fcities = db.table('cities').filter('population > 1000') 
# print a snapshot 
fcities.show() 
# now perform a grouped aggregate 
fcities.aggregate(‘country, sum(population)') 



DuckDB

▸ Composable Interface

import duckdb 

# tight integration with native structures 
df = pandas.read_csv('cities.csv') 
# directly scan a pandas dataframe 
duckdb.from_df(df).filter('population > 1000')



DuckDB

▸ Efficient ETL Workloads 

▸ Traditional systems are not optimized for ETL: 

▸ Bulk updates 

▸ Bulk deletions 

▸ Adding/removing columns 

▸ e.g. a common query is replacing NULL values: 

▸ This can update the entire column!

UPDATE tbl
SET val=NULL
WHERE val=-999;



DuckDB

▸ Efficient Snapshotting for Undo 

▸ ETL workflows are generally trial-and-error 

▸ When a mistake is made, user has to start over 

▸ Typically involves reloading from CSV file again 

▸ This can take a very long time!



DuckDB

▸ Efficient Snapshotting for Undo 

▸ RDBMS supports ROLLBACK/versioning of data 

▸ Current systems not optimized for many different 
versions of entire columns 

▸ DuckDB has MVCC that is optimized for bulk 
updates/deletes to support this use case



DuckDB

▸ DuckDB is free and open-source 

▸ Currently in pre-release (v0.1.9) 

▸ We have a website: www.duckdb.org 

▸ Source Code: https://github.com/cwida/duckdb 

▸ Feel free to try it 

▸ And send us a bug report if anything breaks!

http://www.duckdb.org
https://github.com/cwida/duckdb

