Mark Raasveldt & Hannes Muhleisen

DuckDB -
The SQLite for Analytics



W about:me

» Postdoc in Database Architectures group
» Before that: PhD student

» Before that: Master student

» I like the CWI o« P

» I like databases


about:me

W Relational DBMS

» In our group we work on RDBMS

» Relational DataBase Management Systems

» Many of you have probably used a RDBMS

» Taught in schools, used everywhere



Relational DBMS

» RDBMS have been around forever (in CS terms)

» 1970: Edgar F. Codd presented the relational
model

Information Retrieval

P. BAXENDALE, Editor

- A Relational Model of Data for
Large Shared Data Banks

E. F. Coop
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-



Relational DBMS

» 1974:- SEQUEL: A STRUCTURED ENGLISH QUERY LANGUAGE

by -
Donald D. Chamberlin
Raymond F. Boyce

. IBM Research Laboratory
San Jose, California

ABSTRACT: In this paper we present the data manipulation facility for a
structured English query language (SEQUEL) which can be used for accessing
data in an integrated relational data base. Without resorting to the concepts
of bound variables and quantifiers SEQUEL identifies a set of simple opera-
tions on tabular structures, which can be shown to be of equivalent power to
the first order predicate calculus. A SEQUEL user is presented with a consis-
tent set of keyword English templates which reflect how people use tables to
cbtain information. Moreover, the SEQUEL user is able to compose these basic
templates in a structured manner in order to form more complex queries.

SEQUEL is intended as a data base sublanguage for both the professional pro-
grammer and the more infrequent data base user.



W Relational DBMS

» That's it!
» Since 1974 little has changed.:

» SQL/relational model are still used everywhere

» What have database researchers been doing!?



W Relational DBMS

» SQL is declarative
» You describe what you want to see

» Not how to get the data

» DBMS decides the best way of answering queries



W Relational DBMS

» While SQL has not changed, DBMS have!

» Database community has been optimizing these
systems for half a century

» Original DBMS were made for computers with
kilobytes of memory

» Modern DBMS are made for computers with
terabytes of memory (or clusters of computers)



W Data Science

» Data has been getting increasingly hyped/popular

» Main reason: storing/analyzing data is cheap now

» You can store and analyze gigabytes on standard
laptops/desktops

Hard disk prices over time

Price ($/MB)

1960 1970 1980 1990 2000 2010 2019
Year



W Data Science

» This new trend is called data science

» Overloaded term - |

Computer " Mathand

NHEH:VA Statistics
Data

Science

Software Traditional
Development

Domains/Business
Knowledge

» Data science = Statistics on a macbook



W Data Science

» Data Scientists work with data
» Our field: 50+ years perfecting RDBMS

» Obviously they use RDBMS!
» ... right?



W Data Science

» No!
» They use them if forced...
» Data is in a RDBMS

» Prefer to avoid using them

55

V==




W Data Science

“If your data fits in memory there is no
advantage to putting it in a database: it
will only be slower and more frustrating”
- Hadley Wickham



W Data Science

» Maybe they just don‘t need RDBMS
technology

» What do data scientists actually use?



Data Science

Data Science Frameworks and Libraries (multiple
answers)

SciKit-Learn
TensorFlow
Keras
Seaborn
NLTK
Gensim
Theano
Other

None

Data Wrangling

Plotting

Analysis
Classification
ML

[1] https://www.jetbrains.com/research/python-developers-survey-2018/



Data Science

The 10 most downloaded R packages in 2019

rlang

Rcpp
dplyr
tibble
ggplot2
magrittr
glue

pillar
data.table
R6

Downloads through July 7

6 million
5.6
5
4.9
4.7
4.7
4.2
4.1
3.9
3.9

Development

Data Wrangling

Plotting



W Data Science

» What do pandas, NumPy, dplyr, tibble and
data.table have in common?

» They perform database operations

» Joins, aggregates, basic data transformations,
filters, etc.

» Data scientists need RDBMS functionality!



W Data Science

» Let’'s go back to Hadley’s quote

“If your data fits in memory there is no
advantage to putting it in a database: it
will only be slower and more frustrating”
- Hadley Wickham

» Why does he think that?

» We have been optimizing them for 50 years!



W Data Science Workflow

» Let’s run a data science workflow
» With and without a database system

» And see what happens!



W Data Science Workflow

» Data Science Workflow
» Load data from CSV file
» Perform preprocessing
» ETL: Extract Transform Load

» Run analysis



W Data Science Workflow

» Our example:

» Voter data from North Carolina
» 360MB in CSV format

» Preprocessing:

» Remove entries with missing phone
number or house number

» Compute correlation between phone
number and house number



W Data Science Workflow

» Pure R

» First, install required packages:

install.packages(c("data.table", "dplyr"))



W Data Science Workflow

» Pure R

» Then run the analysis

ncvoter <— fread('ncvoter.csv', sep="\t')

ncvoter %>% filter(!is.na(phone_num), !
is.na(house num)) —> ncvoter filtered

cor(ncvoter_filtered[['phone num']l],

ncvoter_filtered[['house num']])
[1] -0.002638091




W Data Science Workflow

» PostgreSQL
» Install the database server
» Not trivial without package manager!

» Download sources and compile

export PGDATA=ncvoters

initdb
pg_ctl -D ncvoterdb -1 logfile start




W Data Science Workflow

» PostgreSQL

» Next up: install client

install.packages("RPostgres")



W Data Science Workflow

» PostgreSQL

———————————————————————— ANTICONF ERROR ————————— e e

onfiguration failed because libpgq was not found. Try installing:

* deb: libpg-dev (Debian, Ubuntu, etc)

*x rpm: postgresgl-devel (Fedora, EPEL)

* rpm: postgreql8-devel, psstgresql92-devel, postgresql93-devel, or postgresql94-devel (Amazon Linux

)

* csw: postgresql_dev (Solaris)
x brew: libpg (0SX)

If libpg 1s already installed, check that either:

(i) 'pkg-config' is in your PATH AND PKG_CONFIG_PATH contains
a libpg.pc file; or

(ii) 'pg_config' is in your PATH.

If neither can detect , you can set INCLUDE_DIR

and LIB_DIR manually via:

R CMD INSTALL --configure-vars='INCLUDE_DIR=... LIB_DIR=...'

» That didn't work

» Need server installed and in PATH to run
client



W Data Science Workflow

» PostgreSQL

library(RPostgres)

con <— DBI::dbConnect(RPostgres::Postgres(), host='localhost',
dbname="'postgres"')
dbSendQuery(con, "CREATE TABLE ncvoters(...);")

dbSendQuery(con, paste@("COPY ncvoters FROM '", getwd(), "/",
"ncvoter.csv' (FORMAT 'csv', DELIMITER '|', QUOTE '\"', NULL '"')"))
dbSendQuery(con, "DELETE FROM ncvoters WHERE phone_num IS NULL OR
house num IS NULL")

ncvoter filtered <- dbReadTable(con, "ncvoters")
cor(ncvoter_filtered[['phone_num']], ncvoter_ filtered[['house num']])




W Data Science Workflow

15~

10 -

Time (s)

Postg;eSQL




W Data Science Workflow

» Hadley is right

» For data science workflows, database
system are frustrating and slow

» What are the problems?

» How can we fix them?



W RDBMS Problems

» Problems
» Difficult to install
» Difficult to setup/maintain
» Slow data transfer to/from client
» Poor interface with client application

» External state: cannot copy/paste!



W RDBMS Problems

» Client/Server Architecture
» Good for multiple users/separate machine

» Pointless for single-user

» Makes install/setup much more difficult



W RDBMS Problems

» Installation needs to be easy

» pip install for python

» install.packages for R



RDBMS Problems

» Transfer efficiency is crucial

» SQL is not sufficient for data science

» Data scientists use R/Python packages

Don’t Hold My Data Hostage —
A Case For Client Protocol Redesign

Mark Raasveldt Hannes Muhleisen
Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica
Amsterdam, The Netherlands Amsterdam, The Netherlands

m.raasveldt@cwi.nl hannes@cwi.nl

ABSTRACT

» Connectors not built for =
bulk transfer

Don’t Hold My Data Hostage
A Case For Client Protocol Redesign
VLDB2017



W RDBMS Problems

» SQL is a nice language...

» But not as interface for clients!

» Embedding SQL as strings is unnatural
» No syntax highlighting
» Whole class of security vulnerabilities:

» SQL injection



W RDBMS Problems

» SQL as a string is not easily composable

» dplyr allows us to chain operations:

ncvoter %>%
filter(!is.na(phone_num), !'is.na(house_num)) %>%

select(phone_num+1)

» Easily inspect intermediates:

ncvoter %>%
filter(!is.na(phone_num), 'is.na(house_num)) %>%

head




W RDBMS Problems

» SQL: temporary tables

dbSendQuery(con, "CREATE TEMPORARY TABLE
ncvoters filtered AS SELECT *x FROM ncvoters WHERE

phone_num IS NULL OR house_num IS NULL")

dbGetQuery(con, "SELECT *x FROM ncvoters_filtered
LIMIT 10")




W RDBMS Problems

» Cannot copy/paste!

library(data.table)
library(dplyr)
ncvoter <— fread('ncvoter.csv', sep='\t"')

ncvoter %>% filter(!is.na(phone_num), !
is.na(house_num)) —-> ncvoter filtered

cor(ncvoter_filtered[['phone_num']l],
ncvoter_filtered[['house num']])




W RDBMS Problems

» Cannot copy/paste!

library(RPostgres)

con <— DBI::dbConnect(RPostgres::Postgres(), host='localhost',
dbname="'postgres"')
dbSendQuery(con, "CREATE TABLE ncvoters(...);")

dbSendQuery(con, paste@("COPY ncvoters FROM '", getwd(), "/",
"ncvoter.csv' (FORMAT 'csv', DELIMITER '|', QUOTE '\"', NULL '"')"))
dbSendQuery(con, "DELETE FROM ncvoters WHERE phone_num IS NULL OR
house num IS NULL")

ncvoter filtered <- dbReadTable(con, "ncvoters")
cor(ncvoter_filtered[['phone_num']], ncvoter_ filtered[['house num']])




W RDBMS Problems

» Current RDBMS are not a good fit for data
science

» Why do we (database researchers) care?



W RDBMS Problems

» Data science is popular

» Popular = money $$%




W RDBMS Problems

» Data scientists are re-inventing RDBMS

» Poorly!

» No optimizers

» Huge intermediates

» No out-of-memory computation
» No parallelism

» No scalability



W RDBMS Problems

» RDBMS can solve all of these problems
» And more!
» Current RDBMS are “slow and frustrating”

» But they don’t need to be!



| CWL_

@+ DuckDB

an Embeddable Analytical RDBMS



W DuckDB

» Why “Duck” DB?

» Hannes used to own a pet duck




W DuckDB

» DuckDB: The SQLite for Analytics

@= DuckDB

» Core Features

» Simple installation
» Embedded: no server management
» Single file storage format

» Fast analytical processing

» Fast transfer between R/Python and RDBMS



W DuckDB

» Simple Installation & Usage
» Many lessons learned from SQLite
» Embedded system
» Zero external dependencies
» All dependencies are inlined

» Amalgamation (duckdb.cpp & duckdb.hpp)

» Integrated into package managers:

» pi1p 1nstall duckdb
install.packages (“duckdb”)




W DuckDB

» Simple Installation & Usage
» DuckDB does not rely on any external state

» e.g. separate config files, environment variables

» Single-File Storage Format
» Files are easier to handle for users than directories

» See: Microsoft Office




W DuckDB

» Composable Interface

import duckdb

db = duckdb.open('cities.db")

fcities = db.table('cities').filter('population > 1000')
fcities.show()

fcities.aggregate(‘country, sum(population)')




W DuckDB

» Composable Interface

import duckdb

df = pandas.read_csv('cities.csv')

duckdb. from_df(df).filter('population > 1000"')




@= DuckDB

W DuckDB

» Efficient ETL Workloads

» Traditional systems are not optimized for ETL:
» Bulk updates
» Bulk deletions
» Adding/removing columns

» e.g. a common query is replacing NULL values:

UPDATE tbl
SET val=NULL

WHERE val=-999;
» This can update the entire column!



W DuckDB

» Efficient Snapshotting for Undo

» ETL workflows are generally trial-and-error

» When a mistake is made, user has to start over
» Typically involves reloading from CSV file again

» This can take a very long time!



W DuckDB

» Efficient Snapshotting for Undo

» RDBMS supports ROLLBACK/versioning of data

» Current systems not optimized for many different
versions of entire columns

» DuckDB has MVCC that is optimized for bulk
updates/deletes to support this use case




W DuckDB

» DuckDB is free and open-source

» Currently in pre-release (v0.1.9)

» We have a website: www.duckdb.org

» Source Code: https://github.com/cwida/duckdb

» Feel free to try it

» And send us a bug report if anything breaks!



http://www.duckdb.org
https://github.com/cwida/duckdb

