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Projects

I Bayesian inference under model misspecification (SafeBayes)

I Foundations of Bayesianism

I Hypothesis testing (Frequentist, Bayesian, new methods)

Peter Tom Wouter Allard



Frequentist vs. Bayesian probability

Different views on probability:

I Frequentists: frequency in a long run

I Bayesians: degree of belief



Hypothesis Testing

Example:

I Null Hypothesis H0: X n ∼ N(0, σ)

I Alternative Hypothesis H1 : X n ∼ N(θ, σ), θ 6= 0

Different types of hypothesis tests

I p-value based null hypothesis significance tests (frequentist)

I Bayes Factor hypothesis tests (about probability of H0 given
the data)
Limitations: see De Heide and Grünwald (2018)

I Test martingales and S-tests (current work)
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Optional stopping

Optional stopping: ‘peeking at the results so far to decide
whether or not to gather more data’

→ reproducibility crisis in life and behavioural sciences (far too
many false positives)



Frequentist Optional Stopping and p-values (1)

I Data X n = X1,X2, . . . ,Xn; Xi ∈ X
I Hypothesis test Tn : X n 7→ {0, 1}
I Significance level α

Frequentist optional stopping
A sequence of hypothesis tests Tn : X n → {0, 1} with significance
level α is said to be robust under frequentist optional stopping if

PH0 (∃n : Tn(X n) = 1) ≤ α.
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Frequentist Optional Stopping and p-values (2)

Example:

Data X n i.i.d.∼ N(θ, 1)

H0: θ = 0
H1: θ 6= 0
Test statistic: Zn = X

√
n

p-value: p = 2(1−Φ(|Zn|)

Stopping rule: Continue until |Zn| > k, then stop (with
α = 0.05, k = 1.96).

LIL for X1,X2, . . . i.i.d. standard normal:

lim sup
n→∞

∑n
i=1 xi√

2n log log n
= 1 a.s.

This gives us: Zn > λ
√

2 log log n i.o. w.p. 1, for λ < 1.
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Frequentist Optional Stopping and Bayes Factors

Can Bayes Factor hypothesis tests handle frequentist optional
stopping? (Bayesian statisticians suggest they do...)

I Not always (see Sanborn and Hills (2014); De Heide and
Grünwald (2018) )

I Yes, if H0 is simple

I Yes, with composite H0 and certain group invariance structure
(see Hendriksen, De Heide and Grünwald (2018))
Example: Bayesian t-test



Test Martingales (1)

The Test Martingale (Vovk et al., 2011):

A non-negative martingale {Mn}n∈N with initial value M0 = 1.
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Test Martingales (2)

Example:
H0: the coin is fair, i.e. the outcomes X1,X2, . . . are i.i.d.
Bernoulli(0.5)
Start with capital K0 = 1
At each round i

I We invest a fraction qi of our capital on the outcome
{Xi = 0} and 1− qi on {Xi = 1}

I The outcome is revealed

I We get a pay-off: twice our stakes on the correct outcome,
nothing on the other

After N rounds: KN = 2N
∏N

t=1 q(XN |XN−1).



Test Martingales (3)

I If H0 is true, the bet is fair, i.e. E[KN ] ≤ K0

I If KN is large, it is an indication that H0 is not true.

I Test martingales can handle frequentist optional stopping.



S-test statistics

Test martingales can handle frequentist optional stopping and have
additional advantages over p-values (interpretability)

Problem: how to construct test martingales for composite H0.

Current work: S-value
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