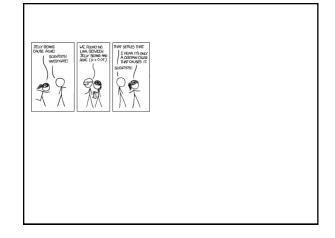
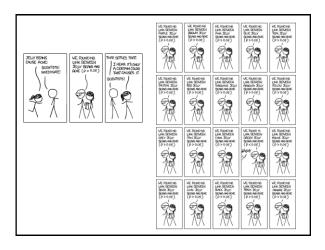


Reasons for Reproducibility Crisis

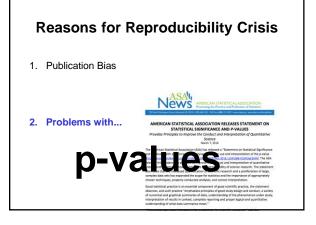
- 1. Publication Bias
- 2. Problems with Hypothesis Testing Methodology





Reasons for Reproducibility Crisis

- 1. Publication Bias
- 2. Problems with Hypothesis Testing Methodology



80 years and still unresolved...

· Standard method for testing is still

p-value-based null hypothesis significance testing

...an amalgam of Neyman-Pearson's and Fisher's 1930s methods

- everybody in psychology and medical sciences (and even in A/B testing) does it...
- most statisticians agree it's not o.k....
- ...but still can't agree on what to do instead!

Null Hypothesis Testing

- Let H₀ = { P_θ | θ ∈ Θ₀ } represent the null hypothesis
 For simplicity, today we assume data X₁, X₂, ... are i.i.d. under all P ∈ H₀.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_{θ} , data are i.i.d. Bernoulli(θ)

 $\Theta_0 = \left\{\frac{1}{2}\right\}, \, \Theta_1 = [0,1] \setminus \left\{\frac{1}{2}\right\}$

Standard test would measure frequency of 1s

Null Hypothesis Testing Let H₀ = { P_θ | θ ∈ θ₀} represent the null hypothesis

- Let H₀ = {P₀|b ∈ θ₀} represent the null hypothesis
 For simplicity, assume X₁, X₂, ... are i.i.d. under all P ∈ H₀.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: testing whether a coin is fair Under P_{θ} , data are i.i.d. Bernoulli(θ)
 - $\Theta_0 = \left\{\frac{1}{2}\right\}, \Theta_1 = [0,1] \setminus \left\{\frac{1}{2}\right\}$ Standard test would measure frequency of 1s

Null Hypothesis Testing

- Let H₀ = { P_θ | θ ∈ Θ₀} represent the null hypothesis
 For simplicity, assume data X₁, X₂, ... are i.i.d. under all P ∈ H₀.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
 - Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2)$ vs. $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2)$ for some $\mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_{\sigma} | \sigma \in (0, \infty) \}$
 - $H_1 = \left\{ P_{\sigma,\mu} \middle| \sigma \in (0,\infty), \mu \in \mathbb{R} \setminus \{0\} \right\}$

Null Hypothesis Testing

- Let H₀ = { P_θ | θ ∈ Θ₀} represent the null hypothesis
 For simplicity, assume data X₁, X₂, ... are i.i.d. under all P ∈ H₀.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- Example: t-test (most used test world-wide) $H_0: X_i \sim_{i.i.d.} N(0, \sigma^2) \text{ vs.}$ Composite H_0 $H_1: X_i \sim_{i.i.d.} N(\mu, \sigma^2) \text{ for some } \mu \neq 0$ σ^2 unknown ('nuisance') parameter $H_0 = \{ P_\sigma | \sigma \in (0, \infty) \}$ $H_1 = \{ P_{\sigma,\mu} | \sigma \in (0, \infty), \mu \in \mathbb{R} \setminus \{0\} \}$

P-value Problem #1: Combining Independent Tests

- Suppose two different research groups tested the same new medication. How to combine their test results?
- You can't multiply p-values!
 - This will (wildly) overestimate evidence against the null hypothesis!
 - Different valid p-value combination methods exist (Fisher's; Stouffer's) but give different results
- In "our" method evidences can be safely multiplied

P-value Problem #2: Combining Dependent Tests

- Suppose reseach group A tests medication, gets 'almost significant' result.
- ...whence group B tries again on new data. How to combine their test results?
 - Now Fisher's and Stouffer's method don't work
 anymore need complicated methods!
- In "our" method, despite dependence, evidences can still be safely multiplied

P-value Problem #2b: Extending Your Test

- Suppose reseach group A tests medication, gets 'almost significant' result.
- Sometimes group A can't resist to test a few more subjects themselves...
 - In a recent survey 55% of psychologists admit to have succumbed to this practice [L. John et al., *Psychological Science*, 23(5), 2012]
- In "our" method, despite dependence, evidences can still be safely multiplied

P-value Problem #2b: Extending Your Test

- Suppose reseach group A tests medication, gets 'almost significant' result.
- Sometimes group A can't resist to test a few more subjects themselves...
 - A recent survey revealed that 55% of psychologists have succumbed to this practice
- But isn't this just cheating?
- Not clear: what if you submit a paper and the referee asks you to test a couple more subjects? Should you refuse because it invalidates your p-values!?

Menu

- 1. A problem with/limitation of with p-values
- 2. S-Values and Safe Tests
 - ...solves the stop/continue problem
 - gambling interpretation
- 3. The New Work: Safe Testing for Composite H₀

S-Values: General Definition

- Let H₀ = { P_θ | θ ∈ Θ₀} represent the null hypothesis
 Assume data X₁, X₂, ... are i.i.d. under all P ∈ H₀.
- Let $H_1 = \{ P_{\theta} | \theta \in \Theta_1 \}$ represent alternative hypothesis
- An S-value for sample size n is a function $S: \mathcal{X}^n \to \mathbb{R}^+_0$ such that for **all** $P_0 \in H_0$, we have

```
\mathbf{E}_{X^n \sim P_0} \left[ S(X^n) \right] \le 1
```

First Interpretation: p-values

- Proposition: Let S be an S-value. Then S⁻¹(Xⁿ) is a conservative p-value, i.e. p-value with wiggle room:
- for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

• Proof: just Markov's inequality!

$$P\left(S(X^n) \ge \alpha^{-1}\right) \le \frac{\mathbf{E}[S(X^n)]}{\alpha^{-1}} = \alpha$$

Safe Tests

- The Safe Test against H_0 at level α based on Svalue S is defined as the test which rejects H_0 if $S(X^n) \ge \frac{1}{\alpha}$
- Since for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

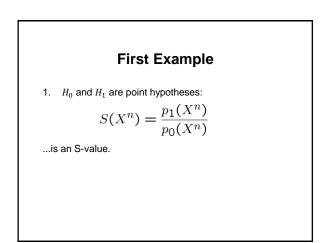
•the safe test which rejects H_0 iff $S(X^n) \ge 20$, i.e. $S^{-1}(X^n) \le 0.05$, has **Type-I Error** Bound of 0.05

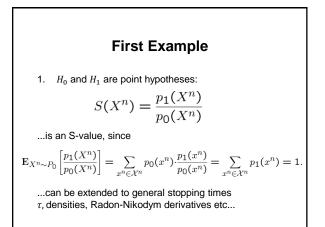
Interpretation 1(b): Type-I Error

- The Safe Test against H_0 at level α based on Svalue S is defined as the test which rejects H_0 if $S(X^n) \ge \frac{1}{\alpha}$
- Since for all $P \in H_0$, all $0 \le \alpha \le 1$,

$$P\left(\frac{1}{S(X^n)} \le \alpha\right) \le \alpha$$

•the safe test which rejects H_0 iff $S(X^n) \ge 20$, i.e. $S^{-1}(X^n) \le 0.05$, has **Type-I Error** Bound of 0.05





Safe Tests are Safe under optional continuation

- Suppose we observe data (X₁, Y₁), (X₂, Y₂), ...
 Y_i: side information, independent of X_i's
- Let S_1, S_2, \ldots, S_k be an arbitrarily large collection of (potentially "identical") S-values for sample sizes n_1, n_2, \ldots, n_k respectively. Let $N_j \coloneqq \sum_{i=1}^j n_i$
- We first evaluate S_1 on data (X_1, \dots, X_{n_1}) .

Safe Tests are Safe under optional continuation

- Suppose we observe data (X₁, Y₁), (X₂, Y₂), ...
 Y_i: side information, independent of X_i's
- Let $S_1, S_2, ..., S_k$ be an arbitrarily large collection of (potentially "identical") S-values for sample sizes $n_1, n_2, ..., n_k$ respectively. Let $N_j := \sum_{i=1}^j n_i$
- We first evaluate S_1 on data (X_1, \dots, X_{n_1}) .
- If outcome is in certain range (e.g. promising but not conclusive) and Y_{n1}has certain values (e.g. 'boss has money to collect more data') then....
 we evaluate S₂ on data (X_{n1+1},...,X_{N2}), otherwise we stop.

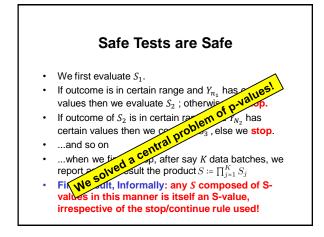
Safe Tests are Safe

- We first evaluate S₁.
- If outcome is in certain range and Y_{n1} has certain values then we evaluate S₂ on new batch of data; otherwise we stop.
- If S_2 is in certain range and Y_{N_2} has certain values then we perform S_3 , else we **stop**.
- ...and so on

(note that sequentially computed S-values may but need not have identical definitions, but data must be different for each test!)

Safe Tests are Safe

- We first evaluate S₁.
- If outcome is in certain range and *Y*_{n1} has certain values then we evaluate *S*₂; otherwise we **stop**.
- If outcome of S_2 is in certain range and Y_{N_2} has certain values then we compute S_3 , else we **stop**.
- ...and so on
- ...when we finally stop, after say K data batches, we report as final result the product $S:=\prod_{j=1}^K S_j$
- **First Result, Informally:** any *S* composed of S-values in this manner is itself an S-value, irrespective of the stop/continue rule used!



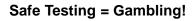
Second, Main Interpretation: Gambling!

Safe Testing = Gambling! Kelly (1956)

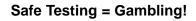
- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off S₂(X_{n1+1},...,X_{N2}) \$ after n₂ further steps.... and so on.
 You may buy multiple and fractional nrs of tickets.

Safe Testing = Gambling!

- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.



- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, ..., X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2.



- At time 1 you can buy ticket 1 for 1\$. It pays off $S_1(X_1, \dots, X_{n_1})$ \$ after n_1 steps
- At time 2 you can buy ticket 2 for 1\$. It pays off $S_2(X_{n_1+1}, ..., X_{N_2})$ \$ after n_2 further steps.... and so on. You may buy multiple and fractional nrs of tickets.
- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2. After $N_2 = n_1 + n_2$ outcomes you stop with end capital $S_1 \cdot S_2$ or you continue and buy $S_1 \cdot S_2$ tickets of type 3, and so on..

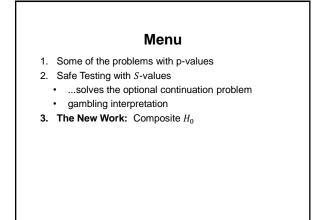
Safe Testing = Gambling! You start by investing 1\$ in ticket 1. After n₁ outcomes you either stop with end capital S₁ or you continue and buy S₁ tickets of type 2. After N₂ = n₁ + n₂ outcomes you stop with end capital S₁. S₂ or you continue and buy S₁ · S₂ tickets of type 3, and so on... S is simply your end capital

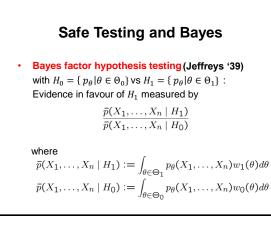
- You start by investing 1\$ in ticket 1.
- After n_1 outcomes you either stop with end capital S_1 or you continue and buy S_1 tickets of type 2. After $N_2 = n_1 + n_2$ outcomes you stop with end capital $S_1 \cdot S_2$ or you continue and buy $S_1 \cdot S_2$ tickets of type 3, and so on...
- S is simply your end capital
- Your don't expect to gain money, no matter what the stop/continuation rule since none of individual gambles S_k are strictly favorable to you

 $\mathbf{E}_{P_0}[S_1] \le 1, \mathbf{E}_{P_0}[S_2] \le 1, \ldots \Rightarrow \mathbf{E}_{P_0}[S] \le 1$

Safe Testing = Gambling!

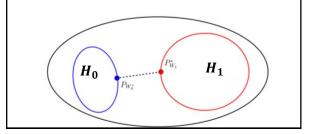
- "Amount of evidence against H_0 " is thus measured in terms of how much money you gain in a game that would allow you not to make money in the long run if H_0 were true!
- Optional Continuation is possible because "you don't expect to make money in a casino no matter what rule you use to decide when to go home"

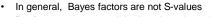




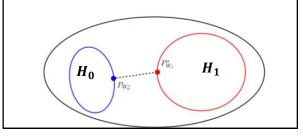


- But for some very special priors they always* are
- For every prior W_1^* , the prior W_0 achieving $\min_{W_0} D(P_{W_1^*} || P_{W_0})$ gives rise to an S-value
- D is KL divergence: W₀ is "(reverse) information projection"





- But for some very special priors they always* are
- For every prior W₁^{*}, the prior W₀ achieving min D(P_{W1}^{*} || P_{W0}) gives rise to an S-value
- "best" S-value for (W_1^*, W_0^*) achieving $\min_{W_1} \min_{W_0} D(P_{W_1^*} || P_{W_0})$



Safe Testing and Bayes, simple H_0

Bayes factor hypothesis testing between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_\theta | \theta \in \Theta_1 \}$: Evidence measured by $\frac{\overline{p}(X_1, \dots, X_n \mid H_1)}{\overline{p}(X_1, \dots, X_n \mid H_0)}$

where $\bar{p}(X_1, \dots, X_n \mid H_1) := \int_{\theta \in \Theta_1} p_{\theta}(X_1, \dots, X_n) w_1(\theta) d\theta$ $\bar{p}(X_1, \dots, X_n \mid H_0) := p_0(X_1, \dots, X_n)$

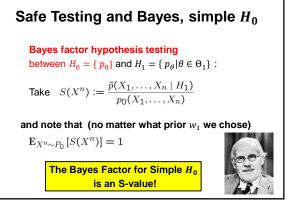
Safe Testing and Bayes, simple H_0

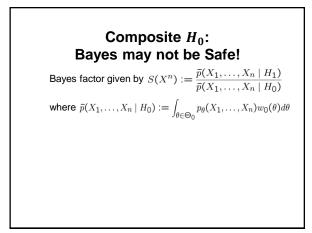
Bayes factor hypothesis testing between $H_0 = \{ p_0 \}$ and $H_1 = \{ p_{\theta} | \theta \in \Theta_1 \}$:

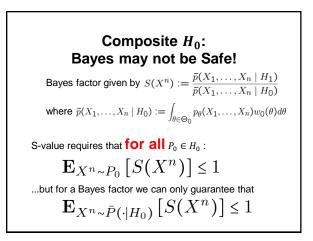
Take $S(X^n) := \frac{\overline{p}(X_1, ..., X_n \mid H_1)}{p_0(X_1, ..., X_n)}$

and note that (no matter what prior w_1 we chose)

$$\begin{split} \mathbf{E}_{X^{n} \sim P_{0}}\left[S(X^{n})\right] &= \\ &\int p_{0}(x^{n}) \cdot \frac{\bar{p}(x^{n} \mid H_{1})}{p_{0}(x^{n})} dx^{n} = \int \bar{p}(x^{n} \mid H_{1}) dx^{n} = 1 \end{split}$$







Central Result: JIPR/RIPR (just a teaser...)

- For completely arbitrary composite H_1 and H_0 , one can construct nontrivial safe tests after all!
- These do take the form

$$S(X^n) := \frac{\overline{p}(X_1, \dots, X_n \mid H_1)}{\overline{p}(X_1, \dots, X_n \mid H_0)}$$

...after all, but for some very special priors on parameters on parameters in H_1 and H_0 (they are 'reverse and joint information projection priors') (these priors may be 'improper' (i.e. they do not integrate) and depend on sample size)

Example: Jeffreys' (1961) Bayesian t-test

 $\begin{array}{l} H_0: \ X_i \sim_{i.i.d.} N(0,\sigma^2) \ \text{vs.} \ H_1: X_i \sim_{i.i.d.} N(\mu,\sigma^2) \ \text{for some} \ \mu \neq 0 \\ \sigma^2 \ \text{unknown} \ (\text{`nuisance'}) \ \text{parameter} \end{array}$

- $H_0 = \{ \, P_\sigma | \sigma \in (0,\infty) \} \quad H_1 = \big\{ \, P_{\sigma,\mu} \, \Big| \sigma \in (0,\infty), \mu \in \mathbb{R} \setminus \{0\} \}$
- In general Bayes factor tests are not safe
- But lo and behold, Jeffreys' uses very special priors and his Bayes factor is an *S*-value, so his Bayesian t-test is a Safe Test! But not the 'best' safe t-test...

Example: Jeffreys' (1961) Bayesian t-test

 $\begin{array}{l} H_0: \ X_i \sim_{i.i.d.} N(0,\sigma^2) \ \text{vs.} \ H_1: X_i \sim_{i.i.d.} N(\mu,\sigma^2) \ \text{for some} \ \mu \neq 0 \\ \sigma^2 \ \text{unknown} \ (\text{`nuisance'}) \ \text{parameter} \end{array}$

 $H_0 = \{ \, P_\sigma \big| \sigma \in (0,\infty) \} \quad H_1 = \left\{ \, P_{\sigma,\mu} \, \Big| \, \sigma \in (0,\infty), \mu \in \mathbb{R} \setminus \{0\} \} \right.$

• In general Bayes factor tests are not safe

• But lo and behold, Jeffreys' uses very special priors and his Bayes factor is an *S*-value, so his Bayesian t-test is a Safe Test! But not the 'best' safe t-test...

Experimental Results/Conclusion

- With the GROW safe t-test you need to reserve about 20% more data points to obtain the same power at the same effect size, compared to the standard t-test
- ...but you are allowed to do *optional stopping*: stop as soon as $S \ge 20$!
- Then on average you need about the same amount of data as with the standard t-test
- I wonder: is there a good excuse *not* to use the Safe t-test?