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Cryptography in Practice 1

Encryption
Sender and receiver can privately communicate

Digital Signatures
Bind a public key to a message

Hashing
Create a short pseudo-random message fingerprint
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Hard functions 2

Breaking cryptographic designs should be hard functions

Number-theoretic Problems Factorization, discrete logarithms
NP-hard Problems Shortest lattice vector, decoding random linear codes
Symmetric Cryptography Finding the secret key
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Moderately-hard functions 3

Time-lock cryptography Iterated squarings
Proofs of Work Brute force search
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Time-lock Puzzles 4

Challenger

Set n← pq with p,q randomly chosen primes
Encrypt message with key K
Choose random a ∈ Zn and compute c← a2T mod n for su�ciently large T
Release encrypted message, K ⊕ c, T, n and a

Solver
Solver computes a2T mod n and adds it to K ⊕ c
Uses K to decrypt the message
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Time-lock Puzzles 5

Challenger

• Computes φ(n)← (p− 1)(q− 1)
• Sets e← 2T mod φ(n)
• Computes ae mod n

Solver
• Computes a1 ← a2 mod n
• Computes a2 ← a2

1 mod n
• . . .
• Computes aT ← a2

T−1 mod n
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Proof of Work 6

Given
I Target T
I Hash function H
I Message m

find a bitstring r such that H(m||r) < T

If H is cryptographically secure, the only way to do this is through brute force
Expected amount of work is T/2n where n is the output hash bit size
In contrast to time-lock, very parallelizable
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Enter Bitcoin 7

Distributed ledger maintained by an unpermissioned network of parties
Uses proofs of work to provide a notion of identity
Achieves state machine replication
Not impossible to disrupt, just hard and with a high cost
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Bitcoin and Proofs of Work 8

Bitcoin is a chain of blocks of transactions
Users must create a block that is a valid proof of work to add it to the chain
In order to rewrite the chain, one must find a new proof of work for each block
Parameters are tuned such that a block will be created every 10 minutes

Bitcoin is a timestamp server
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New Setting 9

New assumptions Minimal setup
New goals Public verifiability, security under incentive compatibility
New primitives Moderately-hard functions, proof-of-resource, NIZK
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A Protocol in this New Setting



Cryptographic Timestamping 10

First achieved by [HS91]
Most protocols are based on hashchains
Requires online verification
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Types of Timestamping 11

Backdating Security (informal)
A timestamping scheme is backdating secure if an adversary cannot claim
something was created earlier than it was.

Postdating Security (informal)
A timestamping scheme is postdating secure if an adversary cannot claim
something was created later than it was.
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Non-interactive Timestamping 12

Impossibility result for non-interactive timestamping
Simulation of an honest prover

We are in a new setting

Achievable with a moderately-hard function (verifiable delay function) [LSS20]
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Verifiable Delay Functions 13

Inverted time-lock puzzles

Prover
Computes a function which takes T sequential steps and outputs the result next to
a proof π

Verifier
Can e�ciently check whether the computation was done correctly using the proof π
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Our Construction 14

c
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Our Construction 14
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Timestamping Security 15

Theorem (Security of the Protocol [LSS20])
If an adversary has corrupted the prover T time ago and has an advantage of α ≥ 1
in VDF computation then:

it cannot modify any record marked older than T · α
it can either keep all records marked older than T · α or none
any modified record of created A time ago has timestamp < A · α ago.
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New Directions 16

New setting which allows us to do what we couldn’t before
Exisiting frameworks need to be extended to accommodate for them
We created backdating-secure protocol in the UC framework where an
adversary has a time dilution factor α



Thank you
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