FROM HARD TO MODERATELY-HARD
NEW FRONTIERS FOR CRYPTOGRAPHY

ESTEBAN LANDERRECHE
CWI SCIENTIFIC MEETING
17 APRIL 2020

CRYPTOGRAPHY IN PRACTICE

Encryption

Sender and receiver can privately communicate

Digital Signatures

Bind a public key to a message

Hashing

Create a short pseudo-random message fingerprint

HARD FUNCTIONS p)

Breaking cryptographic designs should be hard functions

Number-theoretic Problems Factorization, discrete logarithms
NP-hard Problems Shortest lattice vector, decoding random linear codes
Symmetric Cryptography Finding the secret key

MODERATELY-HARD FUNCTIONS 3

Time-lock cryptography Iterated squarings
Proofs of Work Brute force search

TIME-LOCK PUZZLES 4

Challenger

Set n < pq with p, g randomly chosen primes

Encrypt message with key K

Choose random a € Z, and compute ¢ < a2 mod n for sufficiently large T
Release encrypted message, K@ ¢, T, n and a

TIME-LOCK PUZZLES

Challenger

Set n < pq with p, g randomly chosen primes
Encrypt message with key K

Choose random a € Z, and compute ¢ < a2 mod n for sufficiently large T
Release encrypted message, K@ ¢, T, n and a

Solver

Solver computes a2’ mod n and adds it to K & ¢
Uses K to decrypt the message

TIME-LOCK PUZZLES

Challenger

Set n < pq with p, g randomly chosen primes
Encrypt message with key K

Choose random a € Z, and compute

Release encrypted message, K@ ¢, T, n and a

Solver

Solver computes a2’ mod n and adds it to K & ¢
Uses K to decrypt the message

for sufficiently large T

TIME-LOCK PUZZLES 5

Challenger

Computes ¢(n) < (p —1)(q — 1)
Sets e < 27 mod ¢(n)
Computes a® mod n

TIME-LOCK PUZZLES 5

Challenger Solver

Computes ¢(n) < (p —1)(q — 1) Computes a; < a*> mod n
Sets e + 2" mod ¢(n)
Computes a® mod n

TIME-LOCK PUZZLES 5

Challenger Solver

Computes ¢(n) < (p —1)(q — 1) Computes a; < a*> mod n
Sets e + 2" mod ¢(n) Computes a, < a2 mod n
Computes a® mod n

TIME-LOCK PUZZLES 5

Challenger Solver

Computes ¢(n) < (p —1)(q — 1) Computes a; < a*> mod n
Sets e + 2" mod ¢(n) Computes a, < a2 mod n
Computes a® mod n

TIME-LOCK PUZZLES 5

Challenger Solver

Computes ¢(n) < (p —1)(q — 1) Computes a; < a*> mod n
Sets e + 2" mod ¢(n) Computes a, < a2 mod n
Computes a® mod n

Computes ar <— a%_, mod n

PROOF OF WORK 6

m Given

> Target T
» Hash function H
> Message m

find a bitstring r such that H(m||r) < T

PROOF OF WORK 6

m Given

> Target T
» Hash function H
> Message m

find a bitstring r such that H(m||r) < T
m If H is cryptographically secure, the only way to do this is through brute force
m Expected amount of work is T/2" where n is the output hash bit size

PROOF OF WORK 6

m Given

> Target T
» Hash function H
> Message m

find a bitstring r such that H(m||r) < T
m If H is cryptographically secure, the only way to do this is through brute force
m Expected amount of work is T/2" where n is the output hash bit size
® In contrast to time-lock, very parallelizable

ENTER BITCOIN 7

m Distributed ledger maintained by an unpermissioned network of parties
m Uses proofs of work to provide a notion of identity

m Achieves state machine replication

m Not impossible to disrupt, just hard and with a high cost

BITCOIN AND PROOFS OF WORK 8

m Bitcoin is a chain of blocks of transactions

m Users must create a block that is a valid proof of work to add it to the chain

m In order to rewrite the chain, one must find a new proof of work for each block
m Parameters are tuned such that a block will be created every 10 minutes

BITCOIN AND PROOFS OF WORK 8

Bitcoin is a chain of blocks of transactions
Users must create a block that is a valid proof of work to add it to the chain

Parameters are tuned such that a block will be created every 10 minutes
Bitcoin is a timestamp server

[|
[|
m In order to rewrite the chain, one must find a new proof of work for each block
[|
[|

NEW SETTING 9

New assumptions Minimal setup
New goals Public verifiability, security under incentive compatibility
New primitives Moderately-hard functions, proof-of-resource, NIZK

A PROTOCOL IN THIS NEW SETTING

CRYPTOGRAPHIC TIMESTAMPING

m First achieved by [HS91]
®m Most protocols are based on hashchains

m Requires online verification

TYPES OF TIMESTAMPING 1

Backdating Security (informal)

A timestamping scheme is backdating secure if an adversary cannot claim
something was created earlier than it was.

Postdating Security (informal)

A timestamping scheme is postdating secure if an adversary cannot claim
something was created later than it was.

NON-INTERACTIVE TIMESTAMPING

®m Impossibility result for non-interactive timestamping
m Simulation of an honest prover

NON-INTERACTIVE TIMESTAMPING

®m Impossibility result for non-interactive timestamping
m Simulation of an honest prover

We are in a new setting

NON-INTERACTIVE TIMESTAMPING

®m Impossibility result for non-interactive timestamping
m Simulation of an honest prover

We are in a new setting

m Achievable with a moderately-hard function (verifiable delay function) [LSS20]

VERIFIABLE DELAY FUNCTIONS

Inverted time-lock puzzles

VERIFIABLE DELAY FUNCTIONS

Inverted time-lock puzzles

Prover

Computes a function which takes T sequential steps and outputs the result next to
a proof 7

Verifier

Can efficiently check whether the computation was done correctly using the proof =

OUR CONSTRUCTION

OUR CONSTRUCTION

b H(c)

OUR CONSTRUCTION

nop

OUR CONSTRUCTION

bﬁ_)

OUR CONSTRUCTION

OUR CONSTRUCTION

TIMESTAMPING SECURITY 15

Theorem (Security of the Protocol [LSS20])

If an adversary has corrupted the prover T time ago and has an advantage of a > 1
in VDF computation then:

it cannot modify any record marked older than T - «
it can either keep all records marked older than T - « or none
any modified record of created A time ago has timestamp < A - « ago.

NEW DIRECTIONS

m New setting which allows us to do what we couldn’t before
m Exisiting frameworks need to be extended to accommodate for them

m We created backdating-secure protocol in the UC framework where an
adversary has a time dilution factor «

THANK YOU

REFERENCES 1

[§ STUART HABER AND W. SCOTT STORNETTA.
HOW TO TIME-STAMP A DIGITAL DOCUMENT.
Journal of Cryptology, 3(2):99-111, Jan 1991.

[§ MARKUS JAKOBSSON AND ARI JUELS.
PROOFS OF WORK AND BREAD PUDDING PROTOCOLS.
In Secure information networks, pages 258—272. Springer, 1999.

[§ ESTEBAN LANDERRECHE, MARC STEVENS, AND CHRISTIAN SCHAFFNER.
NON-INTERACTIVE CRYPTOGRAPHIC TIMESTAMPING BASED ON VERIFIABLE DELAY FUNCTIONS.
In International Conference on Financial Cryptography and Data Security. Springer,
2020.

@ RONALD L RIVEST, ADI SHAMIR, AND DAVID A WAGNER.
TIME-LOCK PUZZLES AND TIMED-RELEASE CRYPTO.
1996.

	A Protocol in this New Setting
	Appendix

