Quantum computing in a noisy world

Characterization and mitigation of errors.

Jonas Helsen - 30/04 CWI Scientific meeting

Quantum computers: the problem of noise

Quantum computers are noisy!

- What can we learn about this noise? (Characterisation)
 - At the level of gates
 - At the level of algorithms
- Can we correct/ mitigate this noise? (Mitigation)

Noise characterisation and mitigation

Randomised benchmarking: a standard tool

$$p(m) = \mathbb{E}_{U_1, \dots, U_m} M$$

Randomized benchmarking

- Apply sequence of **random** quantum circuits
- Compile such that overall circuit is identity
- Vary sequence length and fit to exponential
- Decay rate estimates gate fidelity

$$p(m) \approx A f^m$$

 $f \, {\rm is} \, {\rm a} \, {\rm measure} \, {\rm of}$ (average) gate quality

Randomised benchmarking: math problems

Questions

- What sets of circuits are useful/practical?
- What assumptions must be made on device physics?
- What is is the sample complexity? Can we lower it?

How do we go from specification to predictable behaviour?

Theory of randomised benchmarking

Statistics of randomised benchmarking

How many random sequences are needed?

Helsen et al. Phys Rev A 100 (3), 032304 (2019) & Helsen et al. Jour. Math. Phys. 59 (072201) (2018)

Noise in quantum computers: into the future

What do I want to do?

Error mitigation techniques

Setting of goals

Information extraction

Advanced characterisation tools

Error mitigation: focus on variational algorithms

Different types of correction

- Learn effect of noise on test circuits
 - (mitigation by learning)
- Artificially induce noise
 - (zero noise extrapolation)

Learning a noise model -> characterisation procedures

Optimisation models vary a lot -> characterisation must be versatile & efficient

Error mitigation cycle

Characterisation: more and better

Goal: Mitigation focused characterisation

Tool: "Shadow Tomography"

Aaronson, STOC18-368 (2018) Huang et al. Nat Phys 16, (2020)

- Observe a quantum object from many (random) angles -> classical "shadows"
- Post-hoc reconstruction of large sets of observables • With explicit reconstruction guarantees
- Very versatile and efficient!

Current goals

- 1. Use shadow techniques to improve mitigation strategies
- 2. Connect randomised benchmarking to shadow tomography -> Is RB "self-randomising shadow process tomography"?

Classical shadows of a quantum state

Take home messages

- Characterisation and mitigation are a fundamental part of near term quantum computing
- Characterisation tools are interesting in their own right
- Characterisation and mitigation
 can inform each other

