Linear Space is Impractical: Constructing

Antidictionaries in Output-Sensitive Space

Lorraine A.K. Ayad Golnaz Badkobeh Gabriele Fici
Alice Héliou Solon P. Pissis

CWI meeting
Amsterdam, The Netherlands, 22 Feb. 2019

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Pattern Matching

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Pattern Matching

o Pattern Matching
T = ababb y = abbababbbabababba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Pattern Matching

o Pattern Matching
T = ababb y = abbababbbabababba

o Indexing
y = abbababbbabababba x = ababb

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Pattern Matching

o Pattern Matching
T = ababb y = abbababbbabababba

o Indexing
y = abbababbbabababba x = ababb

o Comparison

xr = abbababbbabababba abbababbbabababba
Yy = abbabbbabbbabba abba--bbbabbbabba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Pattern Matching

o Pattern Matching
T = ababb y = abbababbbabababba

Indexing
y = abbababbbabababba x = ababb

o Comparison

xr = abbababbbabababba abbababbbabababba
Yy = abbabbbabbbabba abba--bbbabbbabba

o Regularities

NN NN
x = abbabaabaabababba abbabaabaabababba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.

o Comparison

2 = abbababbbabababba abbababbbabababba
y = abbabbbabbbabba abba--bbbabbbabba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.
o Comparison

2 = abbababbbabababba abbababbbabababba
y = abbabbbabbbabba abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.
o Comparison

2 = abbababbbabababba abbababbbabababba
y = abbabbbabbbabba abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

o Regularities

xr = abbabaabaabababba abg?af)\aabag’\beﬁaggba

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.
o Comparison

2 = abbababbbabababba abbababbbabababba
y = abbabbbabbbabba abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

o Regularities
xr = abbabaabaabababba abg?af)\aabag’\beﬁaggba

data compression; repetitive DNA patterns; etc.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

What's “Big"?

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio i nsitive Space

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Constructing Antidictionaries in Output-Sensitive Space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.
Sorting Algorithm

13,5,17,11,3 o 3,5,11,13,17

Constructing Antidictionaries in Output-Sensitive Space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm

13,5,17,11,3 o 3,5,11,13,17

When is the input dataset “Big"?

Constructing Antidictionaries in Output-Sensitive Space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm

13,5,17,11,3 o 3,5,11,13,17

When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

Constructing Antidictionaries in Output-Sensitive Space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm
13,5,17,11,3 _ 5 3,5,11,13,17

When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm
13,5,17,11,3 _ 5 3,5,11,13,17

When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.

So, we define “Big” relative to the available internal memory (RAM).

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Wo

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}

Theorem
@ A word of length n has ©(n) different MAWs.
@ All MAWs of a word of length n can be computed in O(n) time.

| A

@ Any word w of length n is reconstructible in O(n) time from M., .

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition

The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

e Bioinformatics (e.g., pathogen-specific signature)

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition

The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

e Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
Data compression (e.g., on-line lossless compression)
Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

e 6 6 o

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:

@ Consists of MAWs whose length is bounded by some threshold ¢

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
Data compression (e.g., on-line lossless compression)
Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

e 6 6 o

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:
@ Consists of MAWs whose length is bounded by some threshold ¢

@ Max len of a MAW is 2 4+ max len r of a repeated subword

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

e Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:
@ Consists of MAWs whose length is bounded by some threshold ¢
@ Max len of a MAW is 2 4+ max len r of a repeated subword

@ For a random word of length n this is r = O(logn)

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries i

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:
e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]
@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM

In the human genome, for £ = 12, ||M*2|| ~ 10° < n.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM

In the human genome, for £ = 12, ||M*2|| ~ 10° < n.
Problem
Can we compute M* in output-sensitive space?

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio i nsitive Space

Our Problem

Intuition:

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:

Y = Y17y Yk

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = N1#Y2 - HYUk

e Compute Mf; incrementally from the MAWSs of this concatenation

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mf; incrementally from the MAWSs of this concatenation

Formally, we state the following:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mfl incrementally from the MAWSs of this concatenation

Formally, we state the following:

Problem

Given k words yy,ys, ...,y and £ > 0, compute the set M§1#~~#yk of
minimal absent words of length < £ of y1#yoF . . . #Yk.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mfl incrementally from the MAWSs of this concatenation

Formally, we state the following:

Problem

Given k words yy,ys, ...,y and £ > 0, compute the set M§1#~~#yk of
minimal absent words of length < £ of y1#yoF . . . #Yk.

e.g. k chromosomes of a genome or a collection of k£ documents

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio i nsitive Space

The Sketch

: , Y ¢ ¢
We have k iterations computing: My , M, oo, My

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -

We are allowed to store y; #yn

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -

We are allowed to store y;#yx but not the whole y1# ... #yn!

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

We have k iterations computing: Mil,Mgl#yz, . ’le#---#yk'
At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!

For ease of comprehension let us assume: y = y;#yo.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:

Q z belongs to Mgl U/\/l;2 (Case 1)

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:
¢ ¢
@ 1 belongs to M, UM, (Case 1)
¢ ¢
@ 7 does not belong to M, UM, (Case 2)

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is in /\/lf/l UMS (Case 1)

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is in /\/lf/l Uij (Case

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is in th Uij (Case

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: x is in /\/lf/l Uij (

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
Mil = {bb,aaa,bab,aaba} and
Mf;z = {bbb,aaaa,baab,aba,bab,abb}.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: @ is in M., Uij (

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
Mil = {bb,aaa,bab,aaba} and
Mf;z = {bbb,aaaa,baab,aba,bab,abb}.

£ L £y _
M, N(M,, UM,,) = {aaaa,bab,aaba,abb,bbb}.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is not in /\/lf/l Uij (

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is not in /\/lf/l U/\/lfj (Case

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from Mf;z after removing Case 1 MAWs.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is not in /\/lf/l Uij (Case

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from ./\/li2 after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x5 in R§2 and a suffix 1 in Ril.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Combinatorial Results: z is not in /\/lf/l Uij (

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from ./\/li2 after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x5 in R§2 and a suffix 1 in Ril.

I T ‘

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

L m

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
'Rgl = {bb,aaa} and ’Rgz = {baab,aba}.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
'Rgl = {bb,aaa} and ’Rgz = {baab,aba}.

Consider x = abaaa € ./\/lfl \(/\/lé1 u Mgz) (Case 2 MAW).

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
R§1 = {bb,aaa} and Rgz = {baab,aba}.

Consider x = abaaa € ./\/lf/ \(/\/lé1 u ./\/152) (Case 2 MAW).

There is an x5 € ’Riz that is a prefix of abaa and this is aba.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

T

Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
R§1 = {bb,aaa} and Rgz = {baab,aba}.

Consider x = abaaa € ./\/lf/ \(/\/lé1 u ./\/152) (Case 2 MAW).

There is an x5 € ’Riz that is a prefix of abaa and this is aba.
There is an z1 € Rgl that is a suffix of abaaa and this is aaa.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Result

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio i nsitive Space

Our Result

Let n = |y1# ... #ykl-

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Result

Let n = |y1# ... #ykl-

Let MAXIN be the length of the longest word in {y1,...,yx}.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.

Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.
Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.

We use standard string processing data structures to arrive at:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.
Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.

We use standard string processing data structures to arrive at:

¢ ¢ g k ¢
We compute M, ..., My o 4, in O(kn+ 3 8[| My 4wy Il

total time using O(MAXIN + MAXOUT) space.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Experiments on Human Genome

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Experiments on Human Genome

60000

50000

L
B

%

<3
T

Peak memory [G

4

0 2 4 6 8 10 12 0 2
Number & of blocks

()

Figure: Time-space tradeoff

G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis

Constructing Antidictio

4 6 8

Number k of blocks

(b)

10

Final Remarks

A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictio i nsitive Space

arxiv.org/abs/1902.04785

Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785

Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785

Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785

Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these

Accepted to DCC 2019: arxiv.org/abs/1902.04785

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785

Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these

Accepted to DCC 2019: arxiv.org/abs/1902.04785

Thanks!

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785

