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Combinatorial Pattern Matching

o Pattern Matching
T = ababb y = abbababbbabababba

Indexing
y = abbababbbabababba x = ababb

o Comparison

xr = abbababbbabababba abbababbbabababba
Yy = abbabbbabbbabba abba--bbbabbbabba

o Regularities

NN NN
x = abbabaabaabababba abbabaabaabababba
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o Pattern Matching
x = ababb Yy = abbababbbabababba
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Applications of Combinatorial Pattern Matching

o Pattern Matching
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text editors; grep command-line utility; etc.
@ Indexing
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indexing genomes; indexing a collection of documents; etc.

o Comparison

2 = abbababbbabababba abbababbbabababba
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Applications of Combinatorial Pattern Matching

o Pattern Matching
x = ababb Yy = abbababbbabababba

text editors; grep command-line utility; etc.
@ Indexing
y = abbababbbabababba x = ababb

indexing genomes; indexing a collection of documents; etc.
o Comparison

2 = abbababbbabababba abbababbbabababba
y = abbabbbabbbabba abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

o Regularities
xr = abbabaabaabababba abg?af)\aabag’\beﬁaggba

data compression; repetitive DNA patterns; etc.
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What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia
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What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.
Sorting Algorithm
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What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm
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When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.
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What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm
13,5,17,11,3 _ 5 3,5,11,13,17

When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.
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What's “Big"?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What's “Big Data” for an algorithmicist?

Let's think of a well-studied computational problem.

Sorting Algorithm
13,5,17,11,3 _ 5 3,5,11,13,17

When is the input dataset “Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.

So, we define “Big” relative to the available internal memory (RAM).
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Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.
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A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.
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Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}
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Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWSs) for w are:

M, = {aaa, aaba, bab, bb}

Theorem
@ A word of length n has ©(n) different MAWs.
@ All MAWs of a word of length n can be computed in O(n) time.

| A

@ Any word w of length n is reconstructible in O(n) time from M., .
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Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.
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Applications of Minimal Absent Words

Definition

The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

e Bioinformatics (e.g., pathogen-specific signature)
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Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
Data compression (e.g., on-line lossless compression)
Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

e 6 6 o

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:

@ Consists of MAWs whose length is bounded by some threshold ¢
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Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
Data compression (e.g., on-line lossless compression)
Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

e 6 6 o

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:
@ Consists of MAWs whose length is bounded by some threshold ¢

@ Max len of a MAW is 2 4+ max len r of a repeated subword
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Applications of Minimal Absent Words

Definition
The set M,, of MAWSs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:
e Data compression (e.g., on-line lossless compression)
@ Sequence comparison (e.g., alignment-free sequence comparison)
e Pattern matching (e.g., on-line string matching)

e Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M is considered:
@ Consists of MAWs whose length is bounded by some threshold ¢
@ Max len of a MAW is 2 4+ max len r of a repeated subword

@ For a random word of length n this is r = O(logn)
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Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]
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Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space
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Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:
e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]
@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM
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Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM

In the human genome, for £ = 12, ||M*2|| ~ 10° < n.
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Our Motivation

The most efficient algorithm for computing MAWSs of a word of length n:

e O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

@ Uses 20n words of space
o For the human genome (n ~ 3 x 10%), we need 60 GB of RAM

In the human genome, for £ = 12, ||M*2|| ~ 10° < n.
Problem
Can we compute M* in output-sensitive space?
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:

Y = Y17y Yk
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = N1#Y2 - HYUk

e Compute Mf; incrementally from the MAWSs of this concatenation
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mf; incrementally from the MAWSs of this concatenation

Formally, we state the following:
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mfl incrementally from the MAWSs of this concatenation

Formally, we state the following:

Problem

Given k words yy,ys, ...,y and £ > 0, compute the set M§1#~~#yk of
minimal absent words of length < £ of y1#yoF . . . #Yk.
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Our Problem

Intuition:

@ Divide input into k& words, each of which, alone, fits in RAM:
Y = n#y2A - #Yk
e Compute Mfl incrementally from the MAWSs of this concatenation

Formally, we state the following:

Problem

Given k words yy,ys, ...,y and £ > 0, compute the set M§1#~~#yk of
minimal absent words of length < £ of y1#yoF . . . #Yk.

e.g. k chromosomes of a genome or a collection of k£ documents
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The Sketch

: , Y ¢ ¢
We have k iterations computing: My , M, oo, My
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The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
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The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -

We are allowed to store y; #yn
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The Sketch

. : Sl ¢ ‘
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -

We are allowed to store y;#yx but not the whole y1# ... #yn!
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The Sketch

We have k iterations computing: Mil,Mgl#yz, . ’le#---#yk'
At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!

For ease of comprehension let us assume: y = y;#yo.
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The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:
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The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:

Q z belongs to Mgl U/\/l;2 (Case 1)
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The Sketch

. . C gl ¢ ¢
We have k iterations computing: My , M, oo, My

At the Nth iteration we consider: y1 #yn, YoHYN, - - - s UN—1FYN -
We are allowed to store y;#yx but not the whole y1# ... #yn!
For ease of comprehension let us assume: y = y;#yo.

Let z € Mg. We separate two cases:
¢ ¢
@ 1 belongs to M, UM, (Case 1)
¢ ¢
@ 7 does not belong to M, UM, (Case 2)
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Combinatorial Results: z is in /\/lf/l UMS (Case 1)
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Combinatorial Results: z is in /\/lf/l Uij (Case

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.
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Combinatorial Results: z is in th Uij (Case

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.
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Combinatorial Results: x is in /\/lf/l Uij (

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
Mil = {bb,aaa,bab,aaba} and
Mf;z = {bbb,aaaa,baab,aba,bab,abb}.
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Combinatorial Results: @ is in M., Uij (

Lemma (Case 1)

x € Mil belongs to Mf; iff x is a superword of a word in MgQ.

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
Mil = {bb,aaa,bab,aaba} and
Mf;z = {bbb,aaaa,baab,aba,bab,abb}.

£ L £y _
M, N(M,, UM,,) = {aaaa,bab,aaba,abb,bbb}.
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Combinatorial Results: z is not in /\/lf/l Uij (

Let Ril be the set obtained from Mil after removing Case 1 MAWs.
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Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from Mf;z after removing Case 1 MAWs.
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Combinatorial Results: z is not in /\/lf/l Uij (Case

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from ./\/li2 after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x5 in R§2 and a suffix 1 in Ril.
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Combinatorial Results: z is not in /\/lf/l Uij (

Let Ril be the set obtained from Mil after removing Case 1 MAWs.

Let Riz be the set obtained from ./\/li2 after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x5 in R§2 and a suffix 1 in Ril.

I T ‘
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Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
'Rgl = {bb,aaa} and ’Rgz = {baab,aba}.
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Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
'Rgl = {bb,aaa} and ’Rgz = {baab,aba}.

Consider x = abaaa € ./\/lfl \(/\/lé1 u Mgz) (Case 2 MAW).
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Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
R§1 = {bb,aaa} and Rgz = {baab,aba}.

Consider x = abaaa € ./\/lf/ \(/\/lé1 u ./\/152) (Case 2 MAW).

There is an x5 € ’Riz that is a prefix of abaa and this is aba.
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Example

Let y; = abaab, y» = bbaaab and ¢ = 5. y = abaab#bbaaab.
R§1 = {bb,aaa} and Rgz = {baab,aba}.

Consider x = abaaa € ./\/lf/ \(/\/lé1 u ./\/152) (Case 2 MAW).

There is an x5 € ’Riz that is a prefix of abaa and this is aba.
There is an z1 € Rgl that is a suffix of abaaa and this is aaa.
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Our Result

Let n = |y1# ... #ykl-
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Our Result

Let n = |y1# ... #ykl-

Let MAXIN be the length of the longest word in {y1,...,yx}.
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Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.

Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.
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Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.
Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.

We use standard string processing data structures to arrive at:
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Our Result

Let n = |y1# ... #ykl-
Let MAXIN be the length of the longest word in {y1,...,yx}.
Let MAXOUT = max{|| M}, 4, ||+ N € [1,k]}.

We use standard string processing data structures to arrive at:

¢ ¢ g k ¢
We compute M, ..., My o 4, in O(kn+ 3 8[| My 4wy Il

total time using O(MAXIN + MAXOUT) space.
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Experiments on Human Genome
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Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique
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Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently
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Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these
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Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these
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Final Remarks

@ Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

@ Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

© There is a connection between MAWSs and other word regularities.
Our technique could potentially be applied to computing these
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Thanks!
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