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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Combinatorial Pattern Matching

Pattern Matching

x = ababb y = abbababbbabababba

Indexing

x = ababby = abbababbbabababba

Comparison

x = abbababbbabababba

y = abbabbbabbbabba

abbababbbabababba

abba--bbbabbbabba

Regularities

abbabaabaabababbax = abbabaabaabababba
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Applications of Combinatorial Pattern Matching

Pattern Matching

x = ababb y = abbababbbabababba

text editors; grep command-line utility; etc.

Indexing

x = ababby = abbababbbabababba

indexing genomes; indexing a collection of documents; etc.

Comparison

x = abbababbbabababba

y = abbabbbabbbabba

abbababbbabababba

abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

Regularities

abbabaabaabababbax = abbabaabaabababba

data compression; repetitive DNA patterns; etc.
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Applications of Combinatorial Pattern Matching

Pattern Matching

x = ababb y = abbababbbabababba

text editors; grep command-line utility; etc.

Indexing

x = ababby = abbababbbabababba

indexing genomes; indexing a collection of documents; etc.

Comparison

x = abbababbbabababba

y = abbabbbabbbabba

abbababbbabababba

abba--bbbabbbabba

diff command-line utility; aligning genomic sequences; etc.

Regularities

abbabaabaabababbax = abbabaabaabababba

data compression; repetitive DNA patterns; etc.
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



What’s “Big”?

“Big data refers to datasets that are too large or complex for traditional
data-processing application software to adequately deal with”—Wikipedia

What’s “Big Data” for an algorithmicist?

Let’s think of a well-studied computational problem.

13, 5, 17, 11, 3 3, 5, 11, 13, 17

Sorting Algorithm

When is the input dataset “Big”?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.

So, we define “Big” relative to the available internal memory (RAM).
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Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

Mw = {aaa, aaba, bab, bb}

Theorem

1 A word of length n has Θ(n) different MAWs.

2 All MAWs of a word of length n can be computed in O(n) time.

3 Any word w of length n is reconstructible in O(n) time from Mw.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Minimal Absent Words

Definition

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

Mw = {aaa, aaba, bab, bb}

Theorem

1 A word of length n has Θ(n) different MAWs.

2 All MAWs of a word of length n can be computed in O(n) time.

3 Any word w of length n is reconstructible in O(n) time from Mw.
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Applications of Minimal Absent Words

Definition

The set Mw of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

Data compression (e.g., on-line lossless compression)

Sequence comparison (e.g., alignment-free sequence comparison)

Pattern matching (e.g., on-line string matching)

Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary M` is considered:

Consists of MAWs whose length is bounded by some threshold `

Max len of a MAW is 2 + max len r of a repeated subword

For a random word of length n this is r = Θ(log n)
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Our Motivation

The most efficient algorithm for computing MAWs of a word of length n:

O(n) time and space using suffix array, a global data structure
[Barton, Héliou, Mouchard, P, 2014]

Uses 20n words of space

For the human genome (n ≈ 3× 109), we need 60 GB of RAM

Example

In the human genome, for ` = 12, ||M12|| ≈ 106 � n.

Problem

Can we compute M` in output-sensitive space?
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Our Motivation

The most efficient algorithm for computing MAWs of a word of length n:

O(n) time and space using suffix array, a global data structure
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Our Problem

Intuition:

Divide input into k words, each of which, alone, fits in RAM:

y = y1#y2# · · ·#yk

Compute M`
y incrementally from the MAWs of this concatenation

Formally, we state the following:

Problem

Given k words y1, y2, . . . , yk and ` > 0, compute the set M`
y1#...#yk

of
minimal absent words of length ≤ ` of y1#y2# . . .#yk.

e.g. k chromosomes of a genome or a collection of k documents
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The Sketch

We have k iterations computing: M`
y1
,M`

y1#y2
, . . . ,M`

y1#...#yk
.

At the N th iteration we consider: y1#yN , y2#yN , . . . , yN−1#yN .

We are allowed to store yi#yN but not the whole y1# . . .#yN !

For ease of comprehension let us assume: y = y1#y2.

Let x ∈M`
y. We separate two cases:

1 x belongs to M`
y1
∪M`

y2
(Case 1)

2 x does not belong to M`
y1
∪M`

y2
(Case 2)
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Combinatorial Results: x is in M`
y1
∪M`

y2
(Case 1)

Lemma (Case 1)

x ∈M`
y1

belongs to M`
y iff x is a superword of a word in M`

y2
.

x :

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab.
M`

y1
= {bb,aaa,bab,aaba} and

M`
y2

= {bbb,aaaa,baab,aba,bab,abb}.

M`
y ∩(M`

y1
∪M`

y2
) = {aaaa,bab,aaba,abb,bbb}.
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Combinatorial Results: x is in M`
y1
∪M`

y2
(Case 1)

Lemma (Case 1)

x ∈M`
y1

belongs to M`
y iff x is a superword of a word in M`

y2
.

x :

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab.
M`

y1
= {bb,aaa,bab,aaba} and

M`
y2

= {bbb,aaaa,baab,aba,bab,abb}.

M`
y ∩(M`

y1
∪M`

y2
) = {aaaa,bab,aaba,abb,bbb}.
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Combinatorial Results: x is not in M`
y1
∪M`

y2
(Case 2)

Let R`
y1

be the set obtained from M`
y1

after removing Case 1 MAWs.

Let R`
y2

be the set obtained from M`
y2

after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x2 in R`
y2

and a suffix x1 in R`
y1

.

x2 x1

u

a bx :

Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
y2

. Then x is not absent in y2

by Fact 1, and hence in y3, thus x cannot belong to M`
y3

.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`

y1
\M`

y2
belong to M`

y3
. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
y1

obtained from M`
y1

after removing those

words that are superwords of words in M`
y2

. The set R`
y2

is defined analogously.

Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
y1

= {bb,aaa,bab,aaba}
and M`

y2
= {bbb,aaaa,baab,aba,bab,abb}. The word bab is contained in M`

y1
\M`

y2
so it

belongs to M`
y3

. The word aaba 2 M`
y1

is a superword of aba 2 M`
y2

hence aaba 2 M`
y3

. On

the other hand, the words bbb, aaaa and abb are superwords of words in M`
y1

, hence they

belong to M`
y3

. The remaining MAWs are not superwords of MAWs of the other word. The

reduced sets are therefore R`
y1

= {bb, aaa} and R`
y2

= {baab, aba}. In conclusion, we have

for Case 1 that M`
y3
\(M`

y1
[M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
y3

\(M`
y1
[M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b 2 ⌃, be such that x 2 M`
y3

and x /2 M`
y1
[M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x 2 M`
y3

\(M`
y1
[M`

y2
). Then x has a prefix xi in R`

yi
and a su�x

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b 2 ⌃, be a word in M`
y3

\(M`
y1
[M`

y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 2 M`

y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
y1

that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not
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y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
y1

that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not
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Combinatorial Results: x is not in M`
y1
∪M`

y2
(Case 2)

Let R`
y1

be the set obtained from M`
y1

after removing Case 1 MAWs.

Let R`
y2

be the set obtained from M`
y2

after removing Case 1 MAWs.

Lemma (Case 2)

x has a prefix x2 in R`
y2

and a suffix x1 in R`
y1

.

x2 x1

u

a bx :

Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
y2

. Then x is not absent in y2

by Fact 1, and hence in y3, thus x cannot belong to M`
y3

.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`

y1
\M`

y2
belong to M`

y3
. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
y1

obtained from M`
y1

after removing those

words that are superwords of words in M`
y2

. The set R`
y2

is defined analogously.

Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
y1

= {bb,aaa,bab,aaba}
and M`

y2
= {bbb,aaaa,baab,aba,bab,abb}. The word bab is contained in M`

y1
\M`

y2
so it

belongs to M`
y3

. The word aaba 2 M`
y1

is a superword of aba 2 M`
y2

hence aaba 2 M`
y3

. On

the other hand, the words bbb, aaaa and abb are superwords of words in M`
y1

, hence they

belong to M`
y3

. The remaining MAWs are not superwords of MAWs of the other word. The

reduced sets are therefore R`
y1

= {bb, aaa} and R`
y2

= {baab, aba}. In conclusion, we have

for Case 1 that M`
y3
\(M`

y1
[M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
y3

\(M`
y1
[M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b 2 ⌃, be such that x 2 M`
y3

and x /2 M`
y1
[M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x 2 M`
y3

\(M`
y1
[M`

y2
). Then x has a prefix xi in R`

yi
and a su�x

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b 2 ⌃, be a word in M`
y3

\(M`
y1
[M`

y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 2 M`

y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
y1

that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not
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Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.
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It should be clear that the statement of Lemma 1 implies, in particular, that all words
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after removing those
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so it

belongs to M`
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is a superword of aba 2 M`
y2
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. On
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, hence they
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. The remaining MAWs are not superwords of MAWs of the other word. The
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= {baab, aba}. In conclusion, we have
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y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.
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that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
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that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Combinatorial Results: x is not in M`
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(Case 2)

x2 x1
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a bx :

Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
y2

. Then x is not absent in y2

by Fact 1, and hence in y3, thus x cannot belong to M`
y3

.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`

y1
\M`

y2
belong to M`

y3
. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
y1

obtained from M`
y1

after removing those

words that are superwords of words in M`
y2

. The set R`
y2

is defined analogously.

Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
y1

= {bb,aaa,bab,aaba}
and M`

y2
= {bbb,aaaa,baab,aba,bab,abb}. The word bab is contained in M`

y1
\M`
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so it

belongs to M`
y3

. The word aaba 2 M`
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is a superword of aba 2 M`
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hence aaba 2 M`
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. On

the other hand, the words bbb, aaaa and abb are superwords of words in M`
y1

, hence they

belong to M`
y3

. The remaining MAWs are not superwords of MAWs of the other word. The

reduced sets are therefore R`
y1

= {bb, aaa} and R`
y2

= {baab, aba}. In conclusion, we have

for Case 1 that M`
y3
\(M`

y1
[M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
y3

\(M`
y1
[M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b 2 ⌃, be such that x 2 M`
y3

and x /2 M`
y1
[M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x 2 M`
y3

\(M`
y1
[M`

y2
). Then x has a prefix xi in R`

yi
and a su�x

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b 2 ⌃, be a word in M`
y3

\(M`
y1
[M`

y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 2 M`

y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 2 M`
y1

that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
y3

\(M`
y1
[M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab.
R`

y1
= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`

y1
∪M`

y2
) (Case 2 MAW).

There is an x2 ∈ R`
y2

that is a prefix of abaa and this is aba.

There is an x1 ∈ R`
y1

that is a suffix of abaaa and this is aaa.
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Combinatorial Results: x is not in M`
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x2 x1
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a bx :

Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
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. Then x is not absent in y2

by Fact 1, and hence in y3, thus x cannot belong to M`
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.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`
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. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
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obtained from M`
y1

after removing those

words that are superwords of words in M`
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. The set R`
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Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
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so it

belongs to M`
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. On
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, hence they
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. The remaining MAWs are not superwords of MAWs of the other word. The
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= {baab, aba}. In conclusion, we have
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y1
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) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
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y1
[M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b 2 ⌃, be such that x 2 M`
y3

and x /2 M`
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[M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x 2 M`
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). Then x has a prefix xi in R`

yi
and a su�x
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, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b 2 ⌃, be a word in M`
y3

\(M`
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y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 2 M`
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that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
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Analogously, there is an x1 2 M`
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that is a su�x of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa 2 M`
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y1
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)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not

Example

Let y1 = abaab, y2 = bbaaab and ` = 5. y = abaab#bbaaab.
R`
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= {bb,aaa} and R`

y2
= {baab,aba}.

Consider x = abaaa ∈M`
y \(M`
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) (Case 2 MAW).

There is an x2 ∈ R`
y2

that is a prefix of abaa and this is aba.

There is an x1 ∈ R`
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that is a suffix of abaaa and this is aaa.
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Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space



Our Result

Let n = |y1# . . .#yk|.

Let MaxIn be the length of the longest word in {y1, . . . , yk}.

Let MaxOut = max{||M`
y1#...#yN

|| : N ∈ [1, k]}.

We use standard string processing data structures to arrive at:

Theorem

We compute M`
y1
, . . . ,M`

y1#...#yk
in O(kn +

∑k
N=1 ||M`

y1#...#yN
||)

total time using O(MaxIn + MaxOut) space.
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Experiments on Human Genome
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Figure 3: Elapsed time and peak memory usage using increasing k blocks of the entire human
genome for ` = 10, 11, 12; notice that the peak memory usage is the same for all values of `.

k = 2, 4, 6, 8, 10 blocks and setting ` = 10, 11, 12. Figure 3 depicts the change in elapsed
time and peak memory usage as k and ` increase (space-time tradeo↵).

Graph (a) shows an increase of time as k and ` increase; and graph (b) shows a decrease
in memory as k increases (as proved in Theorem 3). Notice that the space to construct the
block-wise data structures bounds the total space used for the specific ` values and that is
why the memory peak is essentially the same for the ` values used. This can specifically be
seen for ` = 10 where all words of length 10 are present in the genome. The same dataset
was used to run the fastest internal memory implementation for computing MAWs [4] on the
same machine. It took only 2242 seconds to compute all MAWs but with a peak memory
usage of 60.80GB. The results confirm our theoretical findings and justify our contribution.
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Final Remarks

1 Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

2 Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

3 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these
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L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

arxiv.org/abs/1902.04785


Final Remarks

1 Space-efficient algorithms designed for global data structures can be
directly applied to the k blocks in our technique

2 Our technique could serve as a basis for parallelising the
construction: several blocks are processed concurrently

3 There is a connection between MAWs and other word regularities.
Our technique could potentially be applied to computing these

Accepted to DCC 2019: arxiv.org/abs/1902.04785

Thanks!
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