Linear Space is Impractical: Constructing Antidictionaries in Output-Sensitive Space

Lorraine A.K. Ayad Golnaz Badkobeh Gabriele Fici Alice Héliou Solon P. Pissis

CWI meeting

Amsterdam, The Netherlands, 22 Feb. 2019

Combinatorial Pattern Matching

x = ababb y = abbabbabbababbababbab

x = ababb y = abbabbabbababbababbab

Indexing

 $y = {\tt abbababbabababa}$ $x = {\tt ababb}$

x = ababb y = abbabbabbababbababbab

Indexing

 $y = abbababbabababba \qquad x = ababb$

Comparison

x = ababb y = abbabbabbababbababbab

Indexing

 $y = {\tt abbababbabababab}$ $x = {\tt ababb}$

Comparison

 $x = {\tt abbababbbabababba}$ ${\tt abbababbbabababbab}$

• Regularities

 $x = {\tt abbabaabaababba}$

Pattern Matching

x = ababb y = abbabbabbababbababbab

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

$$y = {\tt abbababbabababba}$$
 $x = {\tt ababb}$

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

 $y = {\tt abbababbabababba} \qquad x = {\tt ababb}$

indexing genomes; indexing a collection of documents; etc.

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

 $y = {\tt abbababbabababba} \qquad x = {\tt ababb}$

indexing genomes; indexing a collection of documents; etc.

Comparison

- $y = {\tt abbabbbabbabba}$ ${\tt abba--bbbabb}$ babba

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

 $y = {\tt abbababbabababba} \qquad x = {\tt ababb}$

indexing genomes; indexing a collection of documents; etc.

Comparison

 $y = {\tt abbabbbabba} {\tt abba--bbbabb} {\tt babba}$

diff command-line utility; aligning genomic sequences; etc.

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

 $y = {\tt abbababbabababba} \qquad x = {\tt ababb}$

indexing genomes; indexing a collection of documents; etc.

Comparison

 $x = {\tt abbababbabababba}$ ${\tt abbababbabababbabababba}$

 $y = {\tt abbabbbabbabba}$ ${\tt abba--bbbabb}$ babba

diff command-line utility; aligning genomic sequences; etc.

Regularities

Pattern Matching

x = ababb y = abbabbabbababbababbab

text editors; grep command-line utility; etc.

Indexing

 $y = {\tt abbababbabababba} \qquad x = {\tt ababb}$

indexing genomes; indexing a collection of documents; etc.

Comparison

 $y = {\tt abbabbbabbabba}$ ${\tt abba--bbbabb}$ babba

diff command-line utility; aligning genomic sequences; etc.

Regularities

x = abbabaabaabababba abbabaabaabababba

data compression; repetitive DNA patterns; etc.

What's "Big Data" for an algorithmicist?

What's "Big Data" for an algorithmicist?

Let's think of a well-studied computational problem.

What's "Big Data" for an algorithmicist?

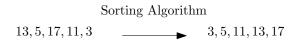
Let's think of a well-studied computational problem.

Sorting Algorithm

13, 5, 17, 11, 3 _____ 3, 5, 11, 13, 17

What's "Big Data" for an algorithmicist?

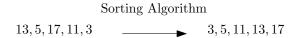
Let's think of a well-studied computational problem.



When is the input dataset "Big"?

What's "Big Data" for an algorithmicist?

Let's think of a well-studied computational problem.



When is the input dataset "Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

What's "Big Data" for an algorithmicist?

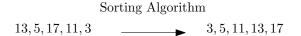
Let's think of a well-studied computational problem.

When is the input dataset "Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails. For instance, when the dataset (or data structure) do not fit in RAM.

What's "Big Data" for an algorithmicist?

Let's think of a well-studied computational problem.



When is the input dataset "Big"?

When a traditional algorithm (e.g. word-RAM mergesort) fails.

For instance, when the dataset (or data structure) do not fit in RAM.

So, we define "Big" relative to the available internal memory (RAM).

Minimal Absent Words

A word v is absent from word w if v does not occur as a subword of w.

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

 $\mathcal{M}_w = \{\texttt{aaa}, \texttt{aaba}, \texttt{bab}, \texttt{bb}\}$

A word v is absent from word w if v does not occur as a subword of w.

An absent word is minimal if all its proper subwords occur in w.

Example

Let w = abaab. The minimal absent words (MAWs) for w are:

$$\mathcal{M}_w = \{\texttt{aaa}, \texttt{aaba}, \texttt{bab}, \texttt{bb}\}$$

Theorem

- **(**) A word of length n has $\Theta(n)$ different MAWs.
- **2** All MAWs of a word of length n can be computed in $\mathcal{O}(n)$ time.
- **3** Any word w of length n is reconstructible in $\mathcal{O}(n)$ time from \mathcal{M}_w .

Applications of Minimal Absent Words

Applications of Minimal Absent Words

Definition

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

- Data compression (e.g., on-line lossless compression)
- Sequence comparison (e.g., alignment-free sequence comparison)
- Pattern matching (e.g., on-line string matching)
- Bioinformatics (e.g., pathogen-specific signature)

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

- Data compression (e.g., on-line lossless compression)
- Sequence comparison (e.g., alignment-free sequence comparison)
- Pattern matching (e.g., on-line string matching)
- Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary \mathcal{M}^{ℓ} is considered:

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

- Data compression (e.g., on-line lossless compression)
- Sequence comparison (e.g., alignment-free sequence comparison)
- Pattern matching (e.g., on-line string matching)
- Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary \mathcal{M}^{ℓ} is considered:

 $\bullet\,$ Consists of MAWs whose length is bounded by some threshold $\ell\,$

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

- Data compression (e.g., on-line lossless compression)
- Sequence comparison (e.g., alignment-free sequence comparison)
- Pattern matching (e.g., on-line string matching)
- Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary \mathcal{M}^{ℓ} is considered:

- $\bullet\,$ Consists of MAWs whose length is bounded by some threshold $\ell\,$
- Max len of a MAW is $2 + \max$ len r of a repeated subword

Definition

The set \mathcal{M}_w of MAWs of w is called the antidictionary of w.

Antidictionaries are used in many real-world applications:

- Data compression (e.g., on-line lossless compression)
- Sequence comparison (e.g., alignment-free sequence comparison)
- Pattern matching (e.g., on-line string matching)
- Bioinformatics (e.g., pathogen-specific signature)

Most of the times, a reduced antidictionary \mathcal{M}^{ℓ} is considered:

- $\bullet\,$ Consists of MAWs whose length is bounded by some threshold $\ell\,$
- Max len of a MAW is $2 + \max$ len r of a repeated subword
- For a random word of length n this is $r = \Theta(\log n)$

Our Motivation

 O(n) time and space using *suffix array*, a global data structure [Barton, Héliou, Mouchard, P, 2014]

- O(n) time and space using *suffix array*, a global data structure [Barton, Héliou, Mouchard, P, 2014]
- Uses 20n words of space

- O(n) time and space using *suffix array*, a global data structure [Barton, Héliou, Mouchard, P, 2014]
- Uses 20n words of space
- For the human genome $(npprox 3 imes 10^9)$, we need $60~{
 m GB}$ of RAM

- O(n) time and space using *suffix array*, a global data structure [Barton, Héliou, Mouchard, P, 2014]
- Uses 20n words of space
- For the human genome ($n pprox 3 imes 10^9$), we need $60~{
 m GB}$ of RAM

Example

In the human genome, for $\ell = 12$, $||\mathcal{M}^{12}|| \approx 10^6 \ll n$.

- O(n) time and space using *suffix array*, a global data structure [Barton, Héliou, Mouchard, P, 2014]
- Uses 20n words of space
- For the human genome $(npprox 3 imes 10^9)$, we need $60~{
 m GB}$ of RAM

Example

In the human genome, for $\ell = 12$, $||\mathcal{M}^{12}|| \approx 10^6 \ll n$.

Problem

Can we compute \mathcal{M}^{ℓ} in output-sensitive space?

Our Problem

• Divide input into k words, each of which, alone, fits in RAM:

• Divide input into k words, each of which, alone, fits in RAM:

$$y = y_1 \# y_2 \# \cdots \# y_k$$

• Divide input into k words, each of which, alone, fits in RAM:

$$y = y_1 \# y_2 \# \cdots \# y_k$$

• Compute \mathcal{M}^ℓ_y incrementally from the MAWs of this concatenation

• Divide input into k words, each of which, alone, fits in RAM:

$$y = y_1 \# y_2 \# \cdots \# y_k$$

• Compute \mathcal{M}^ℓ_y incrementally from the MAWs of this concatenation

Formally, we state the following:

• Divide input into k words, each of which, alone, fits in RAM:

$$y = y_1 \# y_2 \# \cdots \# y_k$$

• Compute \mathcal{M}^ℓ_y incrementally from the MAWs of this concatenation

Formally, we state the following:

Problem

Given k words y_1, y_2, \ldots, y_k and $\ell > 0$, compute the set $\mathcal{M}_{y_1 \# \ldots \# y_k}^{\ell}$ of minimal absent words of length $\leq \ell$ of $y_1 \# y_2 \# \ldots \# y_k$.

• Divide input into k words, each of which, alone, fits in RAM:

$$y = y_1 \# y_2 \# \cdots \# y_k$$

• Compute \mathcal{M}^ℓ_y incrementally from the MAWs of this concatenation

Formally, we state the following:

Problem

Given k words y_1, y_2, \ldots, y_k and $\ell > 0$, compute the set $\mathcal{M}^{\ell}_{y_1 \# \ldots \# y_k}$ of minimal absent words of length $\leq \ell$ of $y_1 \# y_2 \# \ldots \# y_k$.

e.g. k chromosomes of a genome or a collection of k documents

The Sketch

We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$.

We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$.

At the *N*th iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$.

We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ but not the whole $y_1 \# \dots \# y_N$! We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ but not the whole $y_1 \# \dots \# y_N$! For ease of comprehension let us assume: $y = y_1 \# y_2$. We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ but not the whole $y_1 \# \dots \# y_N$! For ease of comprehension let us assume: $y = y_1 \# y_2$. Let $x \in \mathcal{M}_y^{\ell}$. We separate two cases: We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ but not the whole $y_1 \# \dots \# y_N$! For ease of comprehension let us assume: $y = y_1 \# y_2$. Let $x \in \mathcal{M}_y^{\ell}$. We separate two cases: • x belongs to $\mathcal{M}_m^{\ell} \cup \mathcal{M}_{y_2}^{\ell}$ (Case 1) We have k iterations computing: $\mathcal{M}_{y_1}^{\ell}, \mathcal{M}_{y_1 \# y_2}^{\ell}, \dots, \mathcal{M}_{y_1 \# \dots \# y_k}^{\ell}$. At the Nth iteration we consider: $y_1 \# y_N, y_2 \# y_N, \dots, y_{N-1} \# y_N$. We are allowed to store $y_i \# y_N$ but not the whole $y_1 \# \dots \# y_N$! For ease of comprehension let us assume: $y = y_1 \# y_2$.

Let $x \in \mathcal{M}_y^{\ell}$. We separate two cases:

- x belongs to $\mathcal{M}_{y_1}^{\ell} \cup \mathcal{M}_{y_2}^{\ell}$ (Case 1)
- 3 x does not belong to $\mathcal{M}_{y_1}^\ell\cup\mathcal{M}_{y_2}^\ell$ (Case 2)

Lemma (Case 1)

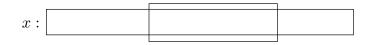
$x \in \mathcal{M}_{y_1}^{\ell}$ belongs to \mathcal{M}_y^{ℓ} iff x is a superword of a word in $\mathcal{M}_{y_2}^{\ell}$.

Lemma (Case 1)

$$x\in \mathcal{M}_{y_1}^\ell$$
 belongs to \mathcal{M}_y^ℓ iff x is a superword of a word in $\mathcal{M}_{y_2}^\ell$

Lemma (Case 1)

$$x\in \mathcal{M}_{y_1}^\ell$$
 belongs to \mathcal{M}_y^ℓ iff x is a superword of a word in $\mathcal{M}_{y_2}^\ell$

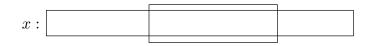


Example

Let
$$y_1$$
 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab.
 $\mathcal{M}_{y_1}^{\ell} = \{bb, aaa, bab, aaba\}$ and
 $\mathcal{M}_{y_2}^{\ell} = \{bbb, aaaa, baab, aba, bab, abb\}.$

Lemma (Case 1)

$$x\in \mathcal{M}_{y_1}^\ell$$
 belongs to \mathcal{M}_y^ℓ iff x is a superword of a word in $\mathcal{M}_{y_2}^\ell$



Example

Let
$$y_1$$
 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab.
 $\mathcal{M}_{y_1}^{\ell} = \{bb, aaa, bab, aaba\}$ and
 $\mathcal{M}_{y_2}^{\ell} = \{bbb, aaaa, baab, aba, aba, abb, abb\}.$
 $\mathcal{M}_{y}^{\ell} \cap (\mathcal{M}_{y_1}^{\ell} \cup \mathcal{M}_{y_2}^{\ell}) = \{aaaa, bab, aaba, abb, bbb\}.$

Let $\mathcal{R}_{y_1}^{\ell}$ be the set obtained from $\mathcal{M}_{y_1}^{\ell}$ after removing Case 1 MAWs.

Let $\mathcal{R}_{y_1}^{\ell}$ be the set obtained from $\mathcal{M}_{y_1}^{\ell}$ after removing Case 1 MAWs.

Let $\mathcal{R}_{y_2}^\ell$ be the set obtained from $\mathcal{M}_{y_2}^\ell$ after removing Case 1 MAWs.

Let $\mathcal{R}_{y_1}^\ell$ be the set obtained from $\mathcal{M}_{y_1}^\ell$ after removing Case 1 MAWs.

Let $\mathcal{R}_{y_2}^\ell$ be the set obtained from $\mathcal{M}_{y_2}^\ell$ after removing Case 1 MAWs.

Lemma (Case 2)

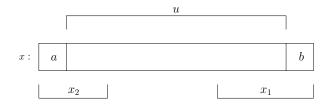
x has a prefix x_2 in $\mathcal{R}_{y_2}^{\ell}$ and a suffix x_1 in $\mathcal{R}_{y_1}^{\ell}$.

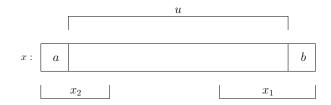
Let $\mathcal{R}_{y_1}^{\ell}$ be the set obtained from $\mathcal{M}_{y_1}^{\ell}$ after removing Case 1 MAWs.

Let $\mathcal{R}_{y_2}^\ell$ be the set obtained from $\mathcal{M}_{y_2}^\ell$ after removing Case 1 MAWs.

Lemma (Case 2)

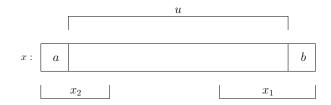
x has a prefix x_2 in $\mathcal{R}^\ell_{y_2}$ and a suffix x_1 in $\mathcal{R}^\ell_{y_1}$.





Example

Let y_1 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab. $\mathcal{R}^{\ell}_{y_1} = \{ \text{bb,aaa} \}$ and $\mathcal{R}^{\ell}_{y_2} = \{ \text{baab,aba} \}$.

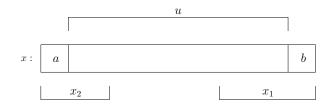


Example

Let y_1 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab. $\mathcal{R}^{\ell}_{y_1} = \{ \text{bb,aaa} \}$ and $\mathcal{R}^{\ell}_{y_2} = \{ \text{baab,aba} \}$.

Consider $x = abaaa \in \mathcal{M}_y^\ell \setminus (\mathcal{M}_{y_1}^\ell \cup \mathcal{M}_{y_2}^\ell)$ (Case 2 MAW).

Combinatorial Results: x is not in $\mathcal{M}_{y_1}^{\ell} \cup \mathcal{M}_{y_2}^{\ell}$ (Case 2)



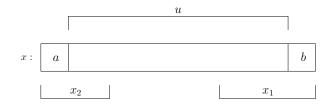
Example

Let y_1 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab. $\mathcal{R}^{\ell}_{y_1} = \{ \text{bb,aaa} \}$ and $\mathcal{R}^{\ell}_{y_2} = \{ \text{baab,aba} \}$.

Consider $x = abaaa \in \mathcal{M}_y^{\ell} \setminus (\mathcal{M}_{y_1}^{\ell} \cup \mathcal{M}_{y_2}^{\ell})$ (Case 2 MAW).

There is an $x_2 \in \mathcal{R}_{u_2}^{\ell}$ that is a prefix of abaa and this is aba.

Combinatorial Results: x is not in $\mathcal{M}_{y_1}^{\ell} \cup \mathcal{M}_{y_2}^{\ell}$ (Case 2)



Example

Let y_1 = abaab, y_2 = bbaaab and $\ell = 5$. y = abaab#bbaaab. $\mathcal{R}^{\ell}_{y_1} = \{ \text{bb,aaa} \}$ and $\mathcal{R}^{\ell}_{y_2} = \{ \text{baab,aba} \}$.

 $\text{Consider } x = \texttt{abaaa} \in \mathcal{M}_y^\ell \setminus (\mathcal{M}_{y_1}^\ell \cup \mathcal{M}_{y_2}^\ell) \text{ (Case 2 MAW)}.$

There is an $x_2 \in \mathcal{R}_{y_2}^{\ell}$ that is a prefix of abaa and this is aba. There is an $x_1 \in \mathcal{R}_{y_1}^{\ell}$ that is a suffix of abaaa and this is aaa.

Let $n = |y_1 \# \dots \# y_k|$.

Let $n = |y_1 \# \dots \# y_k|$.

Let MAXIN be the length of the longest word in $\{y_1, \ldots, y_k\}$.

Let $n = |y_1 \# \dots \# y_k|$.

Let MAXIN be the length of the longest word in $\{y_1, \ldots, y_k\}$.

Let MAXOUT = max{ $|| \mathcal{M}_{y_1 \# \dots \# y_N}^{\ell} || : N \in [1, k]$ }.

Let $n = |y_1 \# \dots \# y_k|$.

Let MAXIN be the length of the longest word in $\{y_1, \ldots, y_k\}$.

Let MAXOUT = max{ $|| \mathcal{M}_{y_1 \# \dots \# y_N}^{\ell} || : N \in [1, k]$ }.

We use standard string processing data structures to arrive at:

Let $n = |y_1 \# \dots \# y_k|$.

Let MAXIN be the length of the longest word in $\{y_1, \ldots, y_k\}$.

Let MAXOUT = max{ $|| \mathcal{M}_{y_1 \# \dots \# y_N}^{\ell} || : N \in [1, k]$ }.

We use standard string processing data structures to arrive at:

Theorem

We compute $\mathcal{M}_{y_1}^{\ell}, \ldots, \mathcal{M}_{y_1 \# \ldots \# y_k}^{\ell}$ in $\mathcal{O}(kn + \sum_{N=1}^k || \mathcal{M}_{y_1 \# \ldots \# y_N}^{\ell} ||)$ total time using $\mathcal{O}(MAXIN + MAXOUT)$ space.

L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis Constructing Antidictionaries in Output-Sensitive Space

Experiments on Human Genome

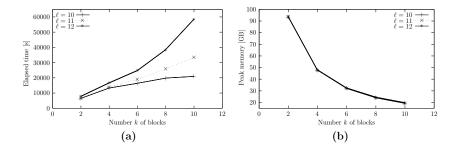


Figure: Time-space tradeoff

Final Remarks

Space-efficient algorithms designed for global data structures can be directly applied to the k blocks in our technique

- Space-efficient algorithms designed for global data structures can be directly applied to the k blocks in our technique
- Our technique could serve as a basis for parallelising the construction: several blocks are processed concurrently

- Space-efficient algorithms designed for global data structures can be directly applied to the k blocks in our technique
- Our technique could serve as a basis for parallelising the construction: several blocks are processed concurrently
- There is a connection between MAWs and other word regularities. Our technique could potentially be applied to computing these

- Space-efficient algorithms designed for global data structures can be directly applied to the k blocks in our technique
- Our technique could serve as a basis for parallelising the construction: several blocks are processed concurrently
- There is a connection between MAWs and other word regularities. Our technique could potentially be applied to computing these

Accepted to DCC 2019: arxiv.org/abs/1902.04785

- Space-efficient algorithms designed for global data structures can be directly applied to the k blocks in our technique
- Our technique could serve as a basis for parallelising the construction: several blocks are processed concurrently
- There is a connection between MAWs and other word regularities. Our technique could potentially be applied to computing these

Accepted to DCC 2019: arxiv.org/abs/1902.04785

Thanks!