Noise Robustness of Optimization
Algorithms via Statistical Queries

Cristobal Guzman

gquzman@cwi.nl

NET
W WORKS

CWI Scientific Meeting
27-11-2015



mailto:cguzman@gatech.edu
mailto:cguzman@gatech.edu

Motivation



Motivation

® |n algorithms: Faster is better, right?



Motivation

® |n algorithms: Faster is better, right?

® Sometimes, other objectives are as important



Motivation
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® Sometimes, other objectives are as important

® [his time, we care about robustness



Example: Gradient Methods

Goal: Find f© = min f(x)

where f : X — R smooth convex function, X C R% compact convex set
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Goal: Find f© = min f(x)

® Gradient Descent [Euler:1770]

o+ = ot — 3,V f(a)

=

f(aT) — f* = 0(1/T)

e Accelerated Gradient Method [Nesterov:1983]
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Example: Gradient Methods

Gradient Descent vs Accelerated Gradient Descent
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g(r) =V [f(z)

Source: Moritz Hardt’s blog



Example: Gradient Methods

555adient Descent vs Accelerated Gradient Descent with noisy gradients
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e Unknown distribution D supported on W

® Algorithm has oracle access to D

® (Goals

e Efficiency ~ small number of queries

® Noise tolerance ~ 7 as large as possible
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Why Statistical Queries”

SQ algorithms have additional properties, or provide the
basis for designing algorithms with additional features:

® Noise tolerance [Kearns:1994]

e Differential privacy Bum, bwork, McSherry, Nissim:2005]
[Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith, 2011]

® Distributed Computation [Balcan, Blum, Fine, Mansour:2012]

® (Generalization in adaptive data analysis  pwork, Feldman,
Hardt, Pitassi, Reingold, Roth:2014]
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Statistical Query Convex Opt.

® Stochastic convex optimization

o
min E_1f(z, w)]

® Statistical queries

® Function value: gb() — f(% )

e Gradient: () = 8fa($’ ) 1 =1,...,d
Lq

e Difficulty: estimation in 2-norm accumulates errors

Of(x,w)

9= E_|Z0 27 = | VEG[f(a,w)] - glla ~ Vir




Optimal Estimation Algorithm

[Feldman, G., Vempala:2015]

Q: Is it possible to avoid noise accumulation in gradient estimation?
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Optimal Estimation Algorithm

[Feldman, G., Vempala:2015]

Q: Is it possible to avoid noise accumulation in gradient estimation?

With high probability — ||VE
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method

® |mproved algorithms for high-dimensional classification
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® |mproved differentially-private convex optimization
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New statistical query algorithms for optimization and
machine learning

® Gradient methods: mirror-descent, accelerated method,
strongly convex minimization

® Polynomial-time algorithms: center of gravity, interior-point
method

® |mproved algorithms for high-dimensional classification
(Perceptron) and regression

® |mproved differentially-private convex optimization
algorithms

We provide new structural lower bounds for convex
optimization



Thank you



