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where                     smooth convex function,                compact convex setf : X ! R X ✓ Rd
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Source: Moritz Hardt’s blog

g(x) = rf(x)



g(x) = rf(x) + ⇠

Example: Gradient Methods
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Source: Moritz Hardt’s blog

⇠ ⇠ N (0,�2), � = 0.1
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• Unknown distribution     supported on  D W

• Goals

• Algorithm has oracle access to D

• Efficiency ~ small number of queries
• Noise tolerance ~     as large as possible ⌧

� : W ! [�1, 1]

E
w⇠D

[�(w)]± ⌧

W

D

1/⌧2
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SQ algorithms have additional properties, or provide the 
basis for designing algorithms with additional features:

• Noise tolerance   [Kearns:1994]

• Differential privacy    [Blum, Dwork, McSherry, Nissim:2005], 
[Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith, 2011]

• Distributed computation    [Balcan, Blum, Fine, Mansour:2012]

• Generalization in adaptive data analysis    [Dwork, Feldman, 
Hardt, Pitassi, Reingold, Roth:2014]
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• Difficulty: estimation in 2-norm accumulates errors

• Stochastic convex optimization
min
x2X

E
w⇠D

[f(x,w)]

• Statistical queries

• Function value: �(·) = f(x, ·)

• Gradient:
�(·) = @f(x, ·)

@xi
i = 1, . . . , d

gi = E
w⇠D


@f(x,w)

@xi

�
± ⌧ ) krEw[f(x,w)]� gk2 ⇡

p
d⌧
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[Feldman, G., Vempala:2015]

Q: Is it possible to avoid noise accumulation in gradient estimation?
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[Feldman, G., Vempala:2015]

Q: Is it possible to avoid noise accumulation in gradient estimation?

W

D

U

With high probability krEw[f(x,w)]� gk2 ⇡ O(

p
log d)⌧
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New statistical query algorithms for optimization and 
machine learning

[Feldman, G., Vempala:2015]

• Gradient methods: mirror-descent, accelerated method, 
strongly convex minimization
• Polynomial-time algorithms: center of gravity, interior-point 
method
• Improved algorithms for high-dimensional classification 
(Perceptron) and regression
• Improved differentially-private convex optimization 
algorithms

We provide new structural lower bounds for convex 
optimization 
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