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Overview

Background: energy networks, blackouts, heavy tails

Main insight of this talk

Mathematical model and analysis

Case study

Conclusion and outlook
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Blackouts in power grids

80B of annual economic damage to US economy from blackouts
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Blackouts in the past fifty years

(source: dnv-gl)
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Can we mathematically understand blackouts?

It took TNO 5 months to figure out the cause of the 2018 Schiphol
power outage (the TenneT investigation still has not been concluded)

“It is not complex, but complicated”

“It is not possible to come up with a both interesting and useful
result”

To predict and detect anomalies, should we use simple black box
methods from machine learning or sophisticated high-dimensional
nonlinear models?

At least one feature of blackouts is not complicated
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Pareto laws in power grids (Hines 09)
Power-law in blackout data 

PAGE 18 14-6-2018 

𝑆 = Lost power in  

       MW during blackout 

ℙ(𝑆 ≥ 𝑥) ℙ(𝑇 ≥ 𝑥) 

𝑥 𝑥 

𝑇 = # affected  customers  

       during blackout 

ℙ 𝑩𝒍𝒂𝒄𝒌𝒐𝒖𝒕 𝒔𝒊𝒛𝒆 ≥ 𝒙 = 𝒄 𝒙−𝜶 

Hines et al. (2009) 

WHY?
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Pareto Law, Weibull, etc

Heavy tails are not as well understood as light tails.
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Pareto Law, Weibull, etc

Heavy tails are not as well understood as light tails.



7

Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions

• Extreme Values are Very Rare

• Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

• Extreme Values are Frequent

• Pareto Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Heavy tails are not as well understood as light tails.
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Examples and properties of heavy tails

As x→ ∞:

Pareto tails (or power tails): P(X > x)≈ x−α = e−α logx

Lognormal tails: P(X > x)≈ e−α(logx)2

Weibull tails: P(X > x)≈ e−αxβ

, β ∈ (0,1).

Key properties:
E[eεX] = ∞, ε > 0.

P(X1 + . . .+Xn > x)∼ P( max
i=1,...,n

Xi > x).
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Heavy Tails are Everywhere:Heavy tails are everywhere!

  

Computer systems Finance 

delays, files, … losses 

1 
𝑃 𝑠𝑖𝑧𝑒 > 𝑛 ≈ 1

𝑛𝛼 

Social networks Energy Systems 

popularity, contagion blackouts 

B. Zwart (CWI) Heavy tails 4 / 43

How do heavy tails occur?
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Heavy tails can occur in many ways

Exogenous factors (e.g. job sizes in queueing)

Multiplication (e.g. gains or losses in finance)

Preferential attachment (social, and other networks)

(Self-organized) criticality

...

Existing work on blackouts, based on model simulation output data, show
long-range correlations in outages, and attributes this to criticality. Earlier
work suggests the usage of critical branching processes.
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Our contribution: a different explanation

Let C be the size of a city, in terms of number of people, and let T be the
size of a blackout, in terms of number of customers affected
Both have statistically significant, almost identical power law for US:

P(C > x)≈ x−1.37 P(T > x)≈ x−1.31.

German city sizes: power law with index 1.28
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log-log plots and Hill plots

US city size data (2000 census) and US outage data (NERC, 2002-2018).
Cutoff chosen according to the PLFIT method of Clauset et. al (2009).
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Intuition

1 Initially the network is fully connected and supply equals demand

2 A failure occurs. Energy is rerouted according to laws of physics,
resulting in additional overloads/failures. A cascade occurs.

3 At some point the network stops being connected. At least one of the
network components has a shortage.

4 Demand in each network component is proportional to sum of the
cities in that component

5 Since city sizes are heavy-tailed, the sum roughly equals the
maximum. A heavy-tailed number of consumers (in a big city) will
have a shortage.

To make this rigorous, we need to show that the mismatch between
supply and demand after a network cut is heavy-tailed.
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Mathematical model

Graph with heavy-tailed sinks:
Demand at node i: Xi, with P(Xi > x)∼ cx−α .
X = (X1, . . . ,Xn).

To model electricity, we use the DC load flow model. Network
topology and reactances are all encoded in the load-flow matrix V,
supply vector equals g, leading to power flows V(g−X).

We consider three stages in our model:

Planning

Operation

Emergency
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Model: operational stage (DC-OPF)

Generation gi in each node i is computed by solving

min
1
2

n

∑
i=1

g2
i

∑
i

gi = ∑
i

Xi

− f̄≤ V(g−X)≤ f̄.

This determines the network flows F = V(g−X)
which play a role in the cascade.

We determine the line limits f̄ in a planning problem.
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Model: planning stage

Given n cities with random sizes X1, . . . ,Xn and given a network topology,
we determine line limits f̄ by solving an unconstrained OPF problem:

min
1
2

n

∑
i=1

g2
i

subject to the balance constraint

∑
i

gi = ∑
i

Xi.

The planning problem has solution gi = X̄n for i = 1, ...,n, with
X̄n = (1/n)∑

n
i=1 Xi the average city size. We now let λ ∈ (0,1) and set

f̄ = λV(X̄ne−X) =−λVX,

This vector will be used in the operational stage
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Model: operational stage (DC-OPF)

min
1
2

n

∑
i=1

g2
i

∑
i

gi = ∑
i

Xi

−f̄≤ V(g−X)≤ f̄

with
f̄ = λV(X̄ne−X) =−λVX.

This leads to actual line flows F = V(g−X).
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Model: emergency stage

Given: line flows F = V(g−X)

Start with one random line outage.

Recompute power flows.

Additional lines fail if new line flow exceeds f̄i/λ .

If islands occur, load or generation is shed proportionally.

T: size of total load shed once cascade is over.
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Main result

Let X be a generic city size, with P(X > x)∼ CXx−α .
Note that T is the blackout size [in terms of number of customers affected]

P(T > x)∼ CTx−α , x→ ∞, (1)

CT = CXn
n

∑
j=1

P(|A1|= j)(1− jλ/n)α . (2)

A1 denotes the (random) set of nodes making up the island with the
largest city in the network.

Proof idea: heavy-tailed large deviations theory allows us to consider the
case of a single big city, and many small cities, reducing the analysis of the
cascade to a single-sink network.

Rigorous proof for almost all λ [when CT is continous in λ ].
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Numerical studies

Our result holds up against several simulation studies

Generation constraints

Extending DC to AC

No heavy tailed blackout size if city sizes are uniformly distributed

IEEE test networks

Synthetic scalable networks, tailored to power grids [Wang, Scaglione,
and co-authors]

Critical assumption: frozen vs random city sizes [quenched vs annealed]
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SciGRID case study - Impact of λ

Figure: Dissection of biggest blackout for loading factors λ = 0.7 (left panels), λ = 0.8
(middle) and λ = 0.9 (right) in terms of the cumulative number of affected customers at
each consecutive stage as displayed in the top charts with the biggest jump colored red.
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Concluding remarks

Main insight

Network upgrades only make the pre-factor in front of power law
smaller. This provides limited effect in preventing large blackouts.
Duration of blackout is light-tailed, and seems independent of size.
It therefore seems to make more sense to invest in making cities more
resilient, rather than to invest in network upgrades.

City sizes are not (very) random. Simulation studies suggests Pareto
laws occur in frozen networks of ≥ 104 cities [this includes North
America]. For smaller networks (like Germany), the principle of one
big jump still seems to hold.

New class of network models, of which topologies may not be scale
free, but scale-free phenomena occur due to city sizes. Currently
looking at other transportation networks.


