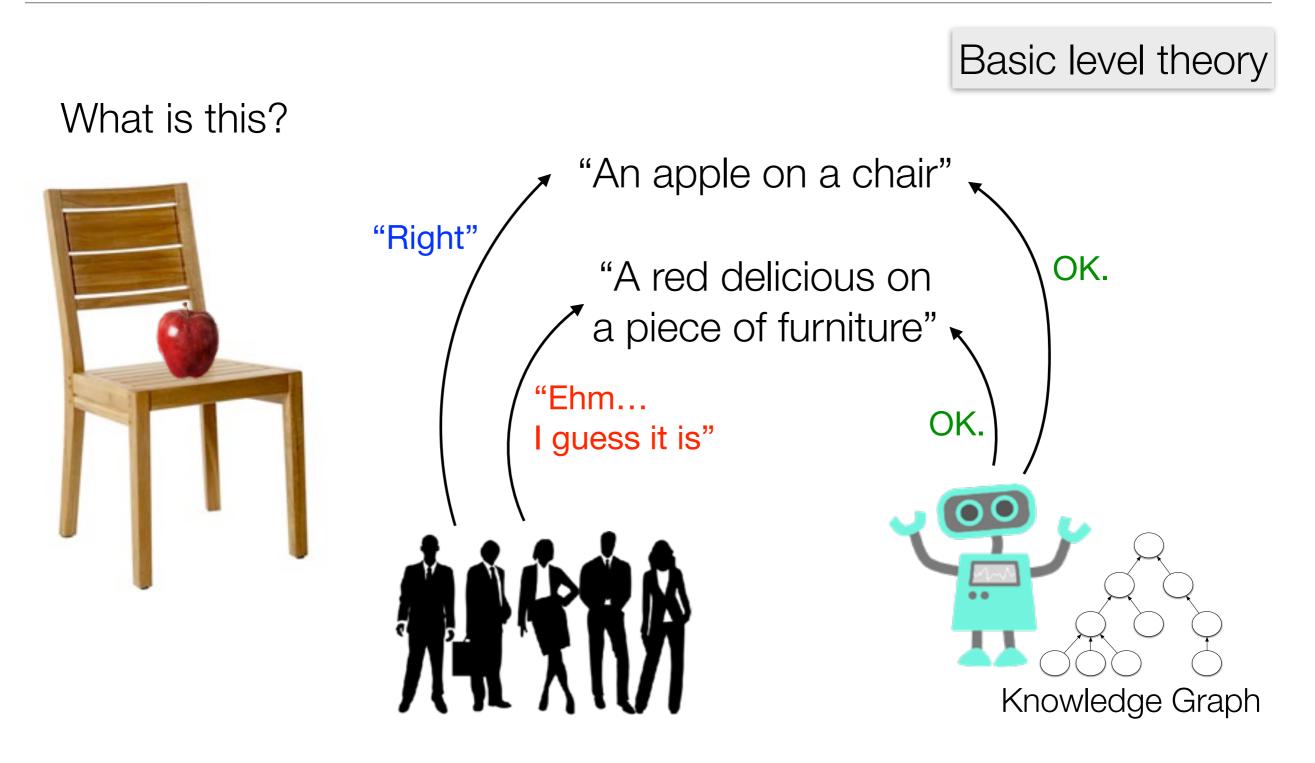
Predicting the basic level in a hierarchy of concepts

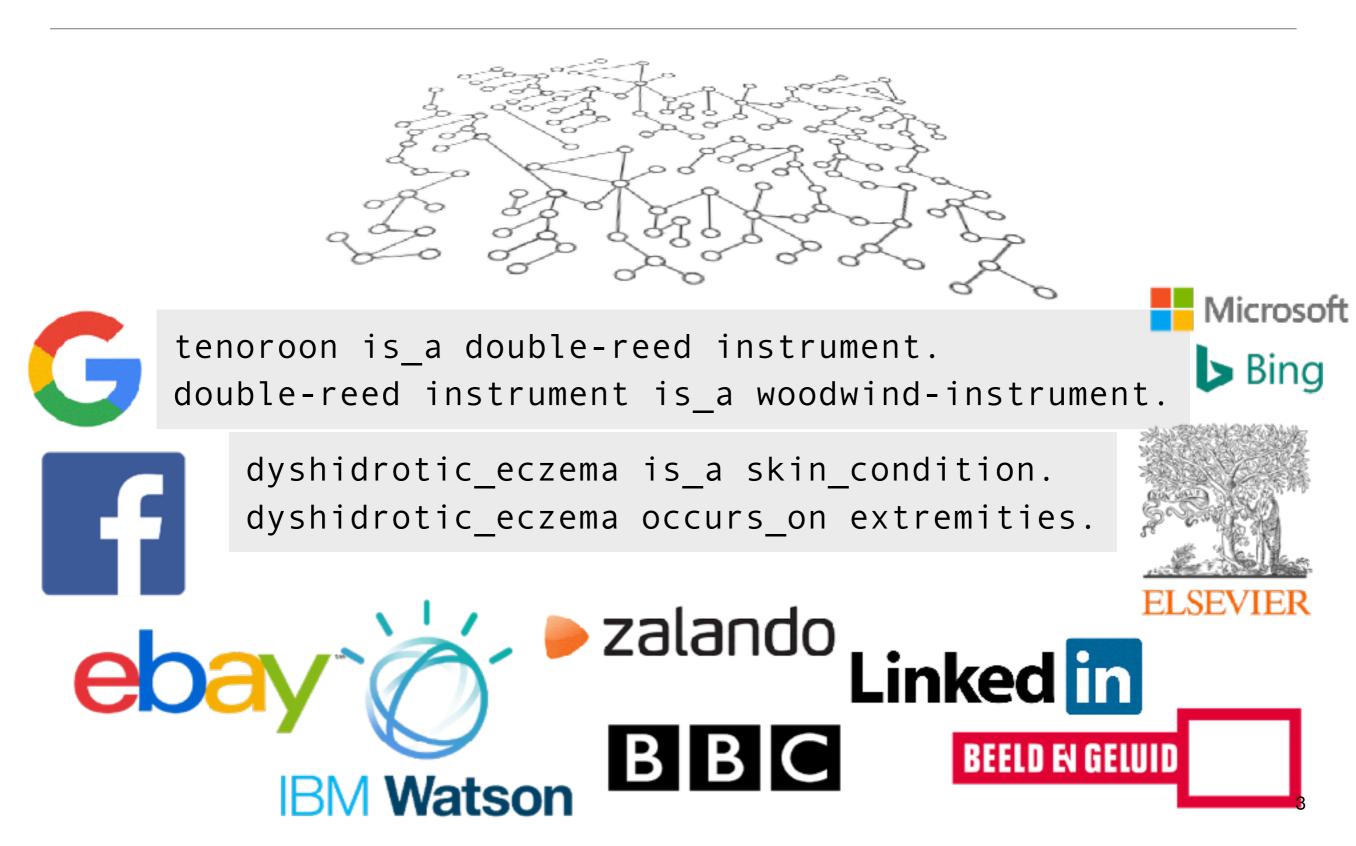
Laura Hollink, Aysenur Bilgin, Jacco van Ossenbruggen Human Centered Data Analytics Centrum Wiskunde & Informatica Amsterdam, The Netherlands

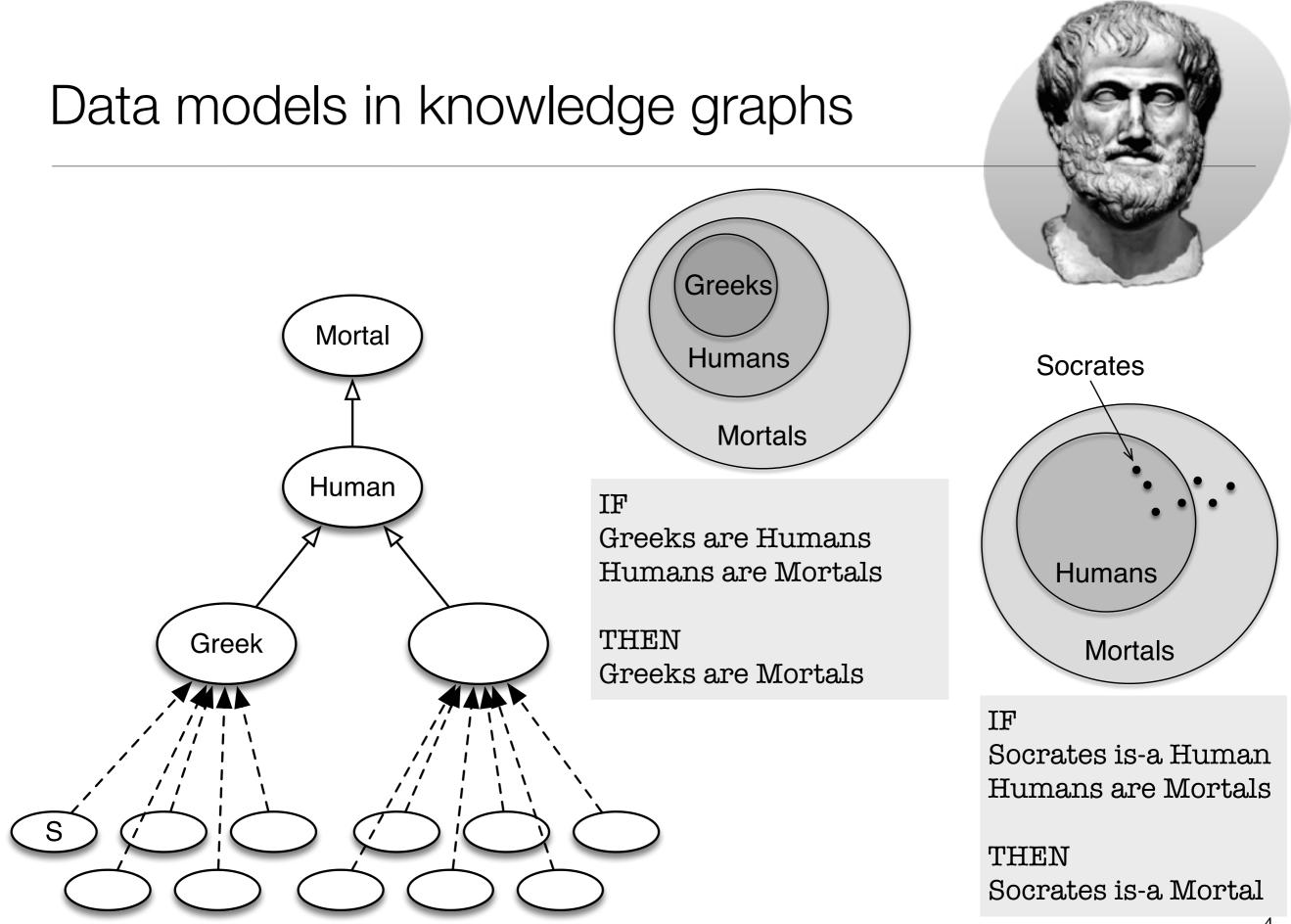
Motivation



Source: Industry-scale Knowledge Graphs: Lessons and Challenges. Natasha Noy at al. 2019. Queue 17-2.

Knowledge graphs





'Data models' in the human mind

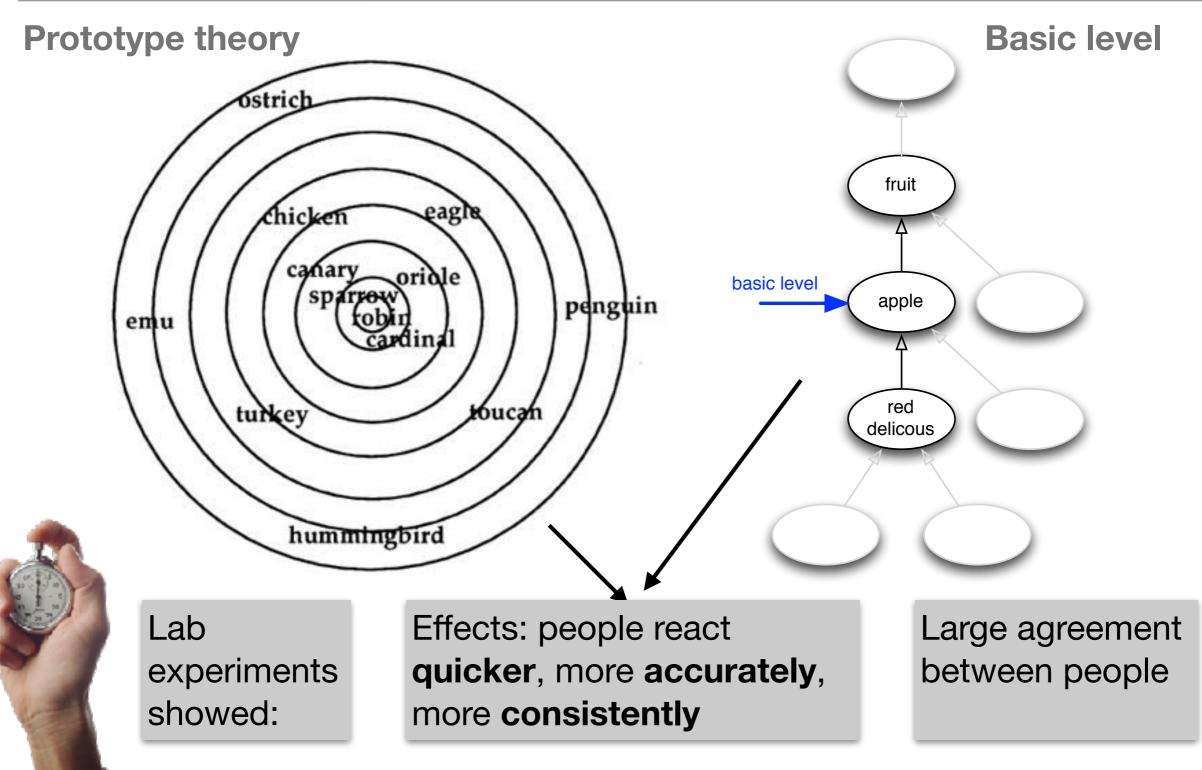
- No necessary and sufficient conditions, but something like "family resemblances"
- Members of a class may not share any characteristics

Wittgenstein

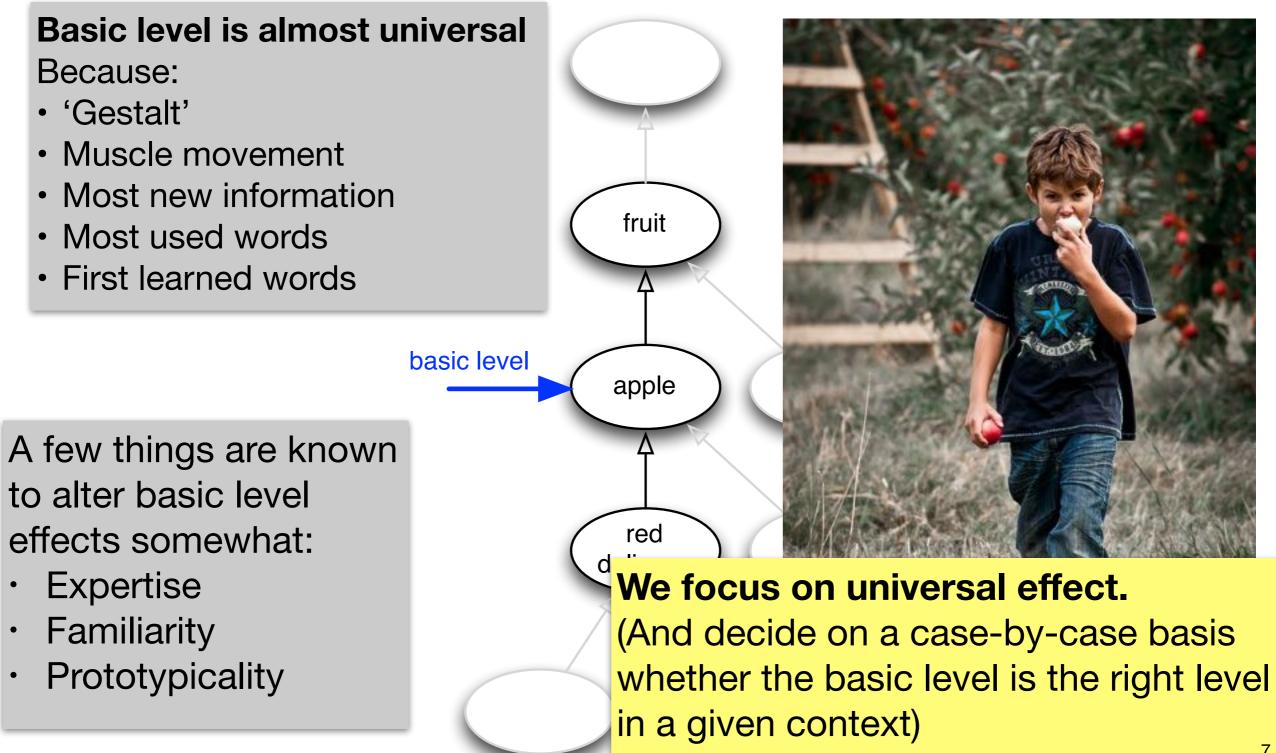
Empirical evidence

- Prototype theory
- Notion of the basic level

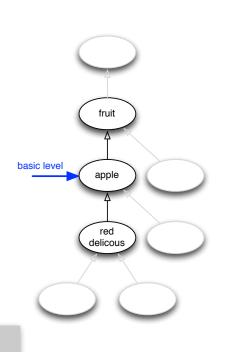
Empirical evidence of this human 'data model'



Basic level across people and cultures



Can we predict which concepts in a knowledge graph are basic level concepts?

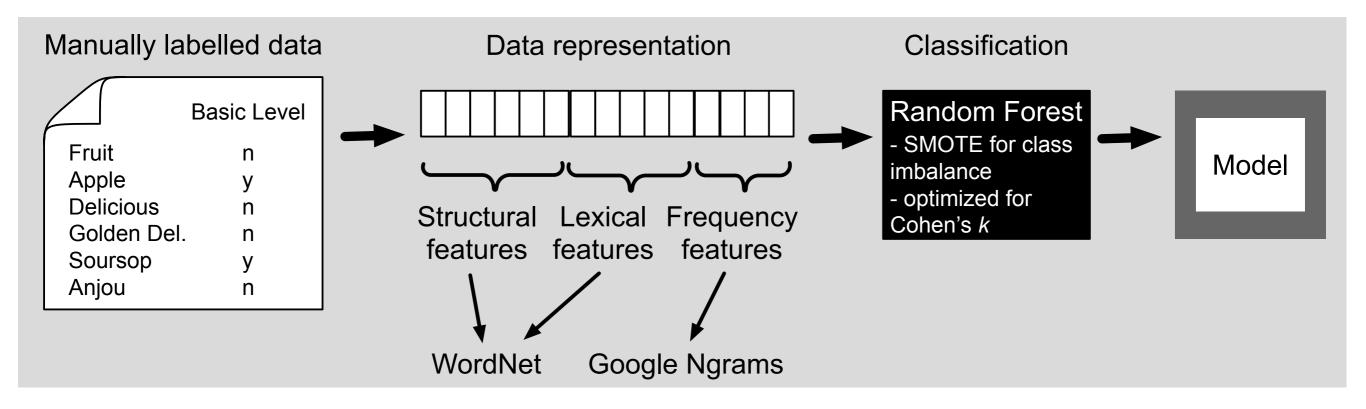


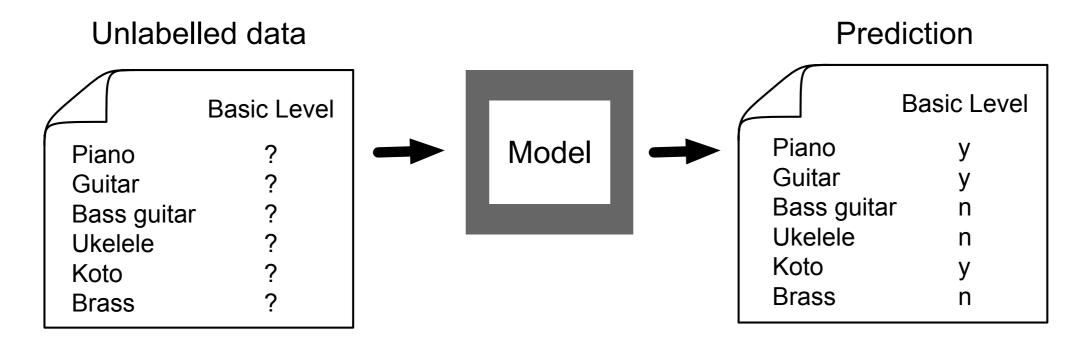
Or, rephrased: Can we predict for which concepts in a Knowledge graph can users be expected to display **basic level effects**?

Hypothesis: Instead of lab experiments with human subjects, we can learn this from **'human-produced data'.**

> L Hollink, A Bilgin, J van Ossenbruggen. *Predicting the Basic Level in a Hierarchy of Concepts*. Metadata and Semantics Research Conference, Nov/Dec 2020.

Predicting the basic level based on three types of human-produced data





Features

Structural features: from WordNet

"the level at which people can name most properties"

- Nr. of subconcepts
- Nr. of direct superconcepts
- Nr. of part-of properties
- Depth in hierarchy
- Length of the description ("gloss")

Lexical features: from WordNet

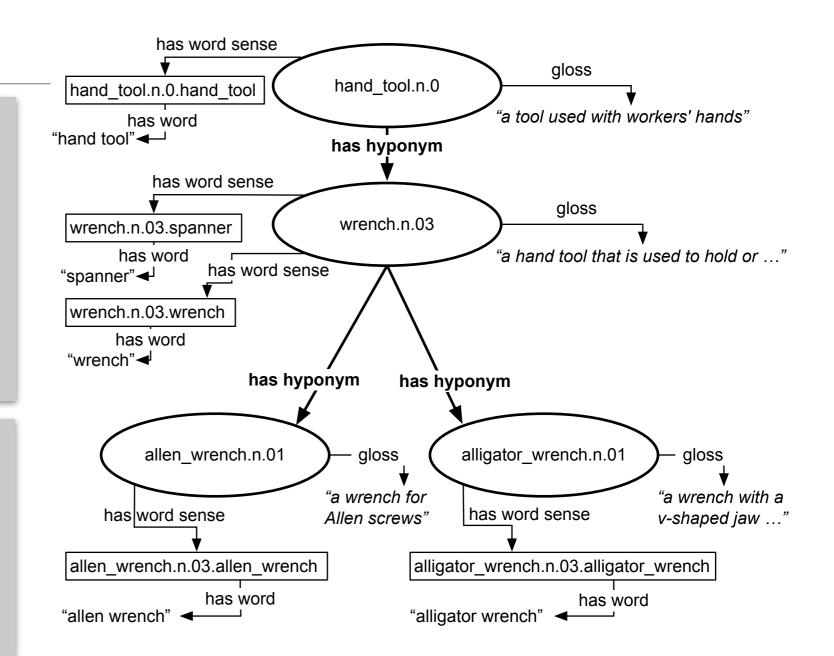
"the level with shortest, most polysemous words"

- Word_length
- Nr. of meanings
- Nr. of synonyms

Frequency features: from Google Ngrams

"the level which is named most often by people"

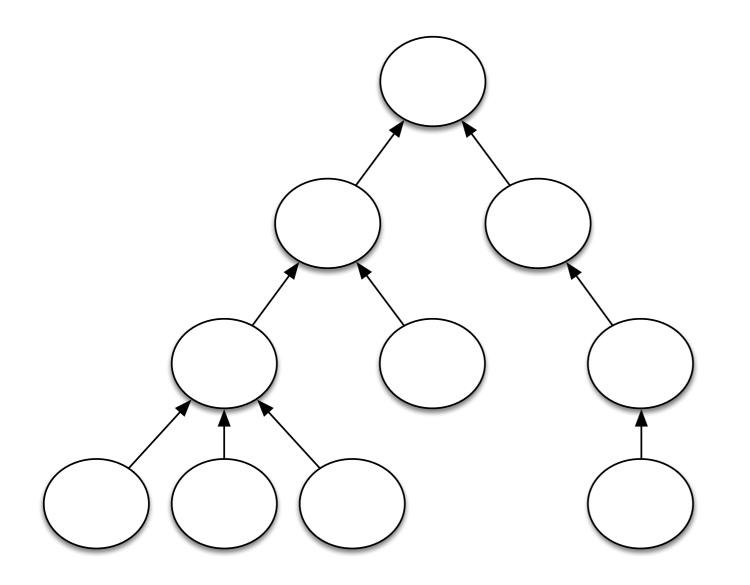
• Frequency of occurrence of the word in the Google Books corpus



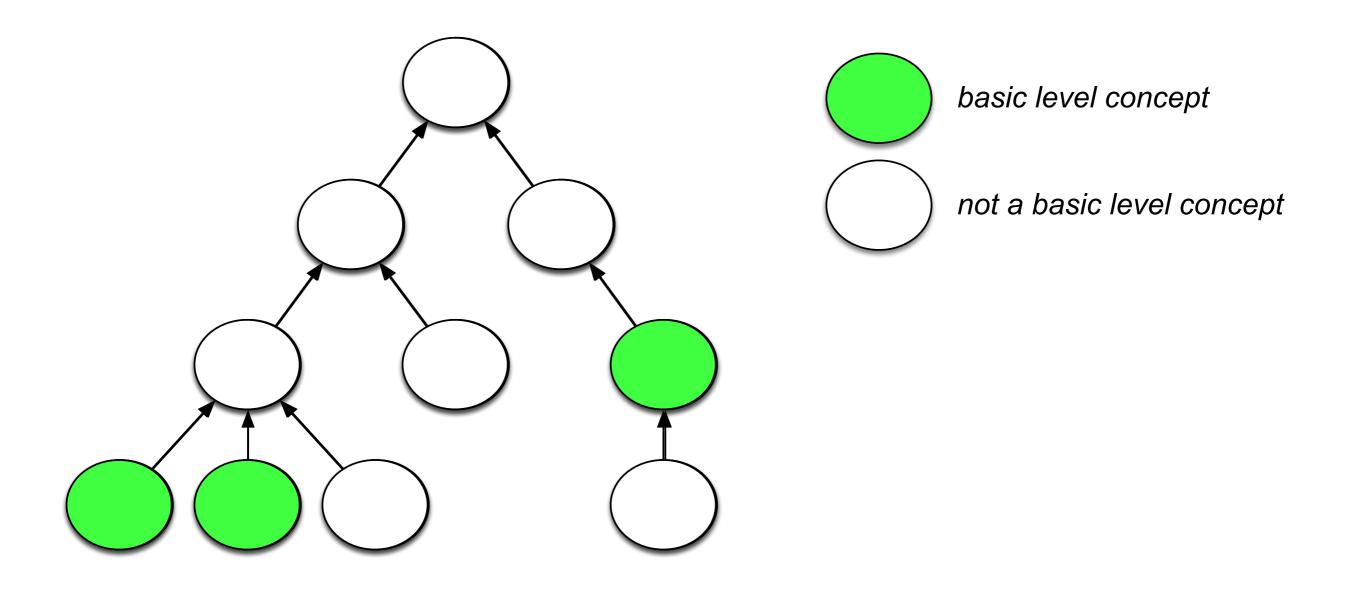
Google Books

Corpus 'English 2012' 4.5M books, 1800-2008

A binary classification problem

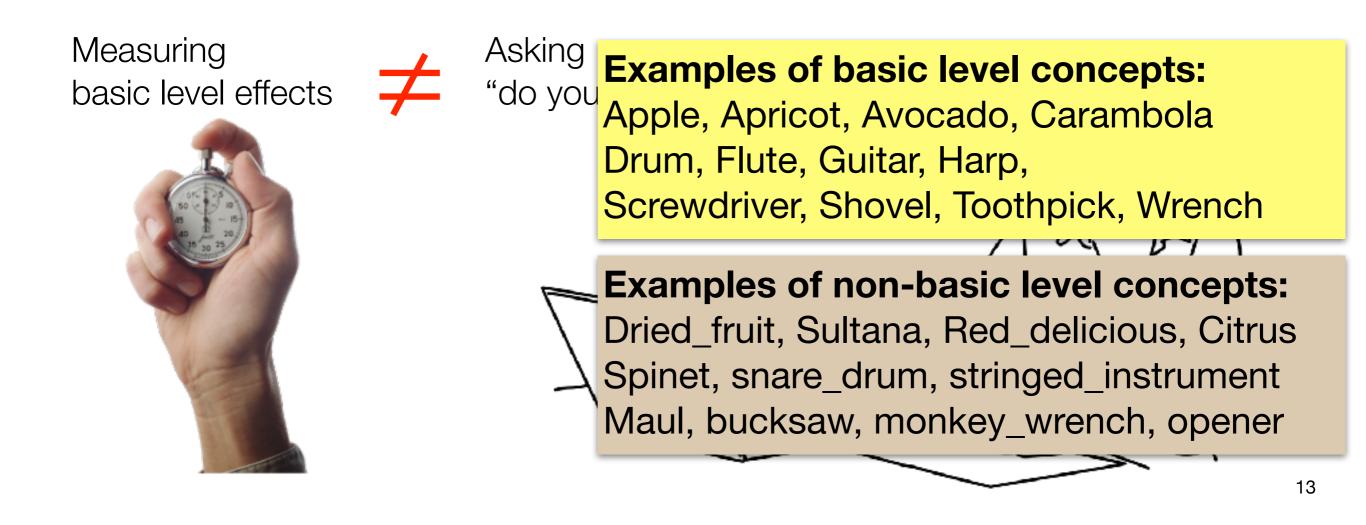


A binary classification problem

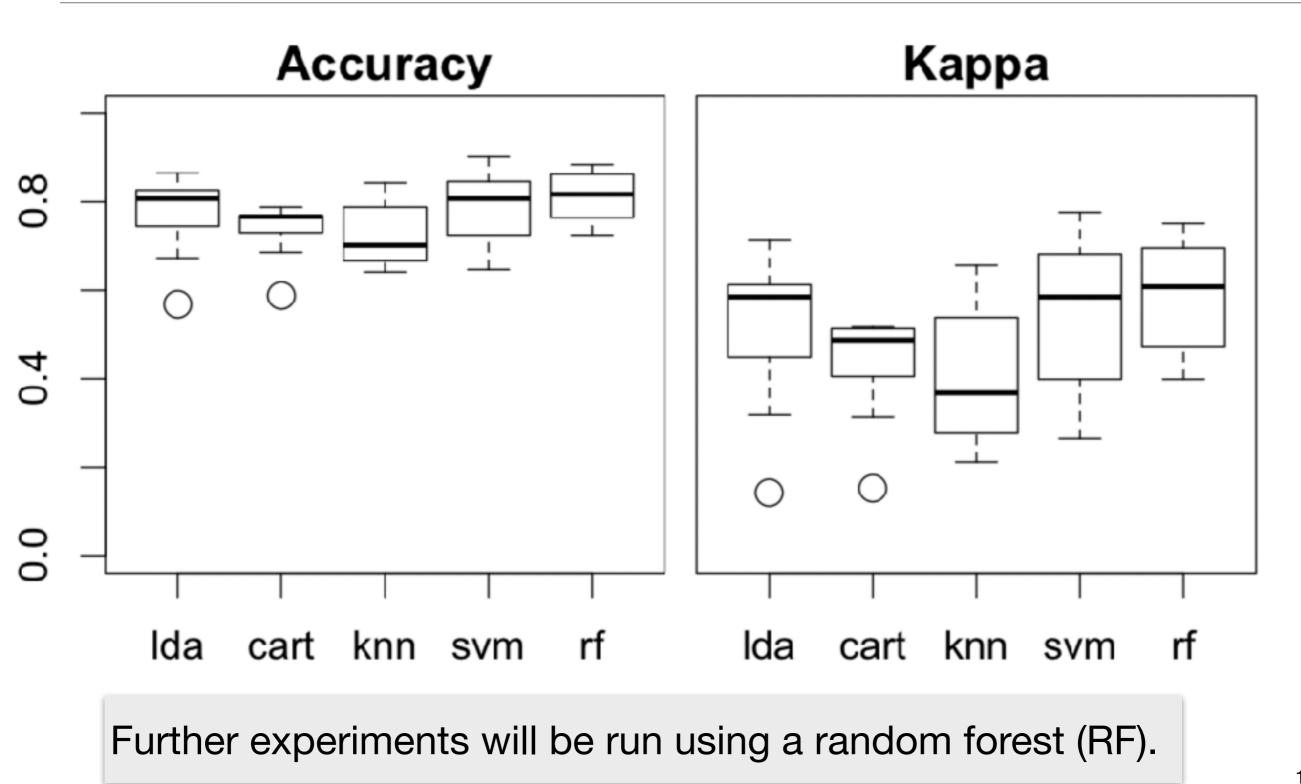


Experiment: basic level prediction in WordNet Training and testing on manually labelled concepts

- 518 concepts in WordNet
- From 3 branches / "domains" that correspond to categories in Rosch' experiments.
- all labelled by 3 raters
- Krippendorff $\alpha = 0.73$
- 1/3 labelled as basic level



Experimental results: A comparison of classification algorithms

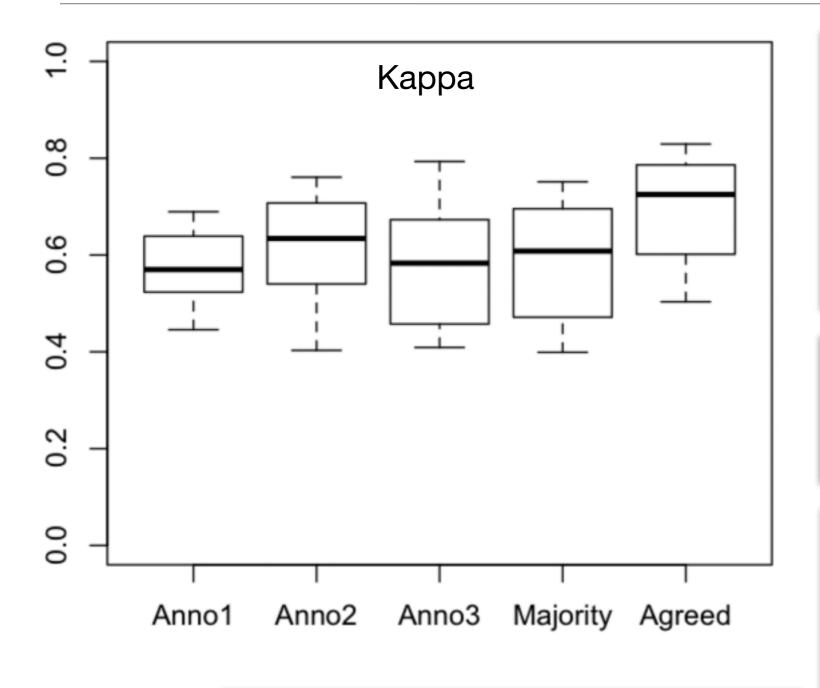


Experimental results: A comparison to baselines

		Accuracy	Kappa
	Random Forest	0.82	0.61
Manual:	basic level at fixed depth	0.64	0.17
	all as basic level	0.36	0.00
Randomly guessing:	none as basic level	0.64	0.00
	50% as basic level	0.49	-0.02
	36% as basic level	0.54	0.01

Accuracy is not a helpful measure in this case

Experimental results: A comparison of human annotators



Raisin, Prune, Dried Apricot

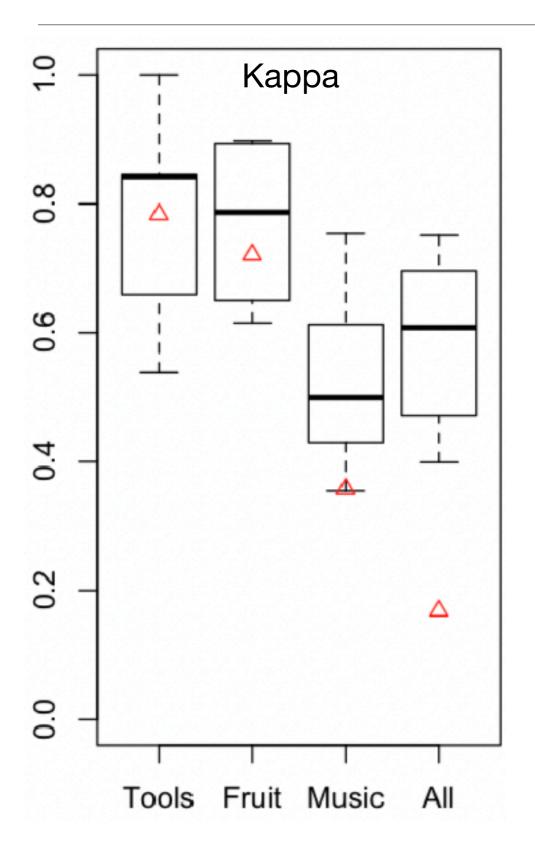
- No significant difference between raters.
- Better performance on concepts on which raters agreed.

Cases that are clear-cut for humans are also easier for machines?

Examples on which raters disagreed:

- Berry
 - Strawberry
 - Blackberry

Experimental results: A comparison of domains



- Training/test set includes concepts from 3 domains:
 - Hand tools
 - Edible fruit
 - Musical Instruments
- Large differences between domains
- Manual method scores reasonably well within one domain.

Cases that are clear-cut for humans are also easier for machines?

Experimental results:

Feature importance in the three domains

Feature	All T	Cool F	ruit M	usic
depth_in_hierarchy	1	1	1	$\overline{2}$
G.Ngram_score	2	2	3	3
$gloss_length$	3	4	4	1
$word_length_min$	4	5	6	4
polysemy_max	5	3	5	7
$nr_of_partOfs$	6	8	2	8
nr_of_hyponyms	7	6	8	5
$nr_of_synonyms$	8	7	7	6
$nr_of_direct_hypern.$	9	9	9	9

- There are some differences between domains
- All features types are needed

Experimental results: Prediction in a new domain

- What happens when we predict in a new domain, for which we don't have manually labelled examples in the training set?
 - Performance drops.
- Normalisation: divide each feature value by the average feature value within the domain.
 - After per-domain normalisation, performance drop is much smaller.

New domain	Trained on	RF	Manual
Tools	Fruit+Music	0.37	0.02
Fruit	Tools+Music	-0.1	-0.42
Music	Tools+Fruit	0.35	-0.01

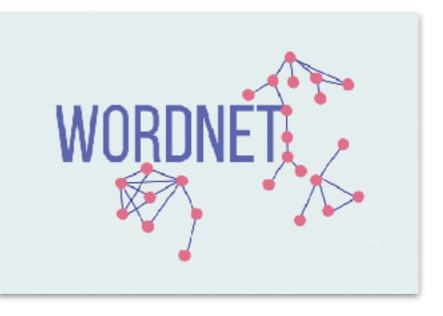
Experimental results: Prediction in a new domain

- What happens when we predict in a new domain, for which we don't have manually labelled examples in the training set?
 - Performance drops.
- Normalisation: divide each feature value by the average feature value within the domain.
 - After per-domain normalisation, performance drop is much smaller.

				After normalisation of features:			
New domain	Trained on	RF	Manual	S	Structura	al Lexical	Frequency
Tools	Fruit+Music	0.37	0.02		0.62	0.43	0.34
Fruit	Tools+Music	-0.1	-0.42		0.41	0.06	-0.13
Music	Tools+Fruit	0.35	-0.01		0.32	0.21	0.34

Applying the model knowledge-graph scale

- Applied to WordNet (74k noun synsets)
- With best preforming settings
- How to split a Knowledge Graph up into domains?



Result: 16k basic level concepts (21%)

Available in RDF from:

https://github.com/ jrvosse/wordnet-3.0-rdf/ tree/master/basiclevels

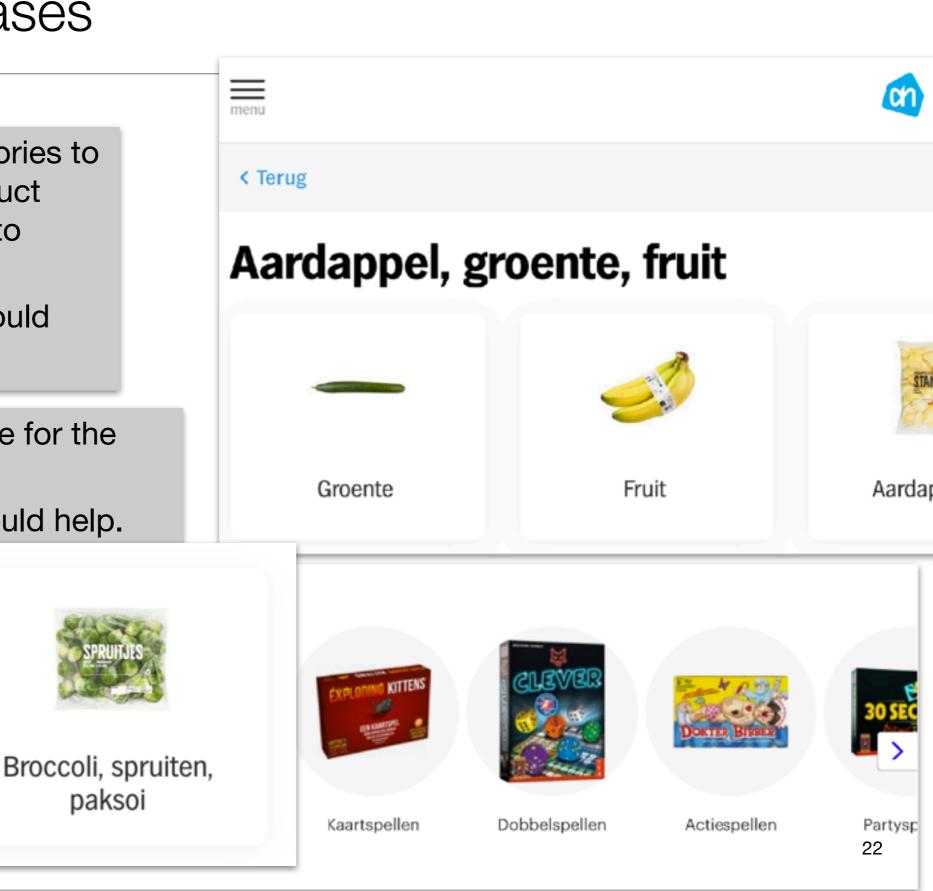
Purpose:

- to enable research into the use of basic level concepts in applications
- for us to further finetune the algorithm
 - e.g. to remove cases where two basic levels are in a hierarchical relation.

Possible use cases

- When displaying categories to customers, which product image should be used to represent a category?
 - Prototype-scores could help!
- Which names to choose for the categories?
 - basic level terms could help.

paksoi



Bokiik allo artika

Koolsoorten

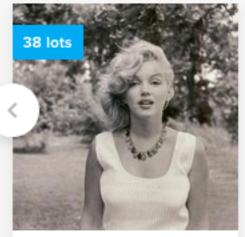
Possible use cases

- When displaying categories to customers, which product image should be used to represent a category?
 - Maybe prototype-scores could help!

- Which names to choose for the categories?
 - basic level terms could help.

Top picks this week

Looking for inspiration?

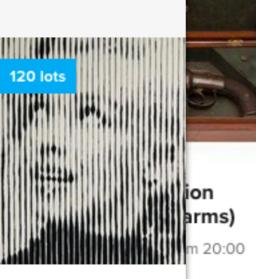


Photography Auction (Movie Stars, Musicians & Celebrities)

Ends Sunday from 20:00 onwards

Print & Limited Edition Auction

Ends Monday from 20:00 onwards



Emerging Contemporary Arl Auction (Figurativ & Realistic)

Ends Monday from 20:00

onwards

Militaria Auction (Pre-1919)

Ends Sunday from 20:00 onwards

Classic Hunting Weaponry Auction

Ends Monday from 20:00 onwards

Conclusions - where do we stand now?

- We can predict basic level concepts based on human produced data
 - if we have a representative training set.
 - If not, in a new domain, we need per-domain normalisation
 - Domain splitting / "ontology modularisation" is crucial.
 - Open question:
 - Some cases are easy for both humans and machines; some are hard.

is it true that the easy ones are worth most for an application?

Conclusions - where do we want to go?

- More sources:
 - "basic" text corpora (children's books, language learning resources)
 - distributional models
 - structure of wikipedia lemmas
 - image repositories (e.g. ImageNet)
- Better training sets
 - larger, e.g. with crowd-sourcing
 - measuring basic level effects instead of asking a rater.
- Wider applicability
 - Test in other knowledge graphs
- Also predict *prototypes.*

...so that machines can better anticipate human behaviour.