
1

Semidefinite optimization for polynomials in
noncommuting variables

Networks & Optimization
Algorithm & Complexity

Scientific Meeting, June 2014

Sabine Burgdorf



2

What is it and why should I care?

What are we up to?
I Generalize polynomial optimization over scalar variables
I Want to optimize polynomials evaluated in matrices

[
1 0
0 1

]

What do we need?
I Polynomials in noncommuting variables EAT 6=TEA

I Approximation technique using semidefinite programs

What do I need it for?
I Applications in quantum physics

I quantum chemistry: ground state electronic energy of atoms
I quantum theory: upper bounds for violation of Bell inequalities
I quantum information: multi prover games/quantum correlation

I Application in systems control
I Systematic strategy to compute stabilizing feedback for closed loop

systems

system F

feedback G

eu y
−
v
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What is polynomial optimization?

I p ∈ R[x ] polynomial
I Find

pmin = min
a∈Rn

p(a)

We can add polynomial
constraints like g(a) ≥ 0
to define a region where
we want to optimize p

Example
A matrix M is copositive if pmin ≥ 0 for p =

∑
i,j Mijx2

i x2
j .

Problem
Calculating pmin is in general NP-hard

I Find a way to make it easier→ approximation
I Involves sums of squares and semidefinite programs
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What is a semidefinite program?

max 〈C,X 〉
s.t. 〈Aj ,X 〉 = bj , j = 1, . . . ,m

X � 0

← linear function

← affine space
← psd matrix

}
spectrahedron

I Optimization of a linear function over an affine space intersected
with the set of positive semidefinite matrices: a spectrahedron

I Essentially solvable in polynomial time using interioir point
algorithms, e.g. SeDuMi, SDPT3, SDPA, Mosek,...

poly in log(1/ε)
for precision ε
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NC polynomial optimization

Idea: Replace a with ai ∈ R by A with Ai symmetric matrices

I Model NC polynomials

I Polynomials in noncommuting variables X = (X1, . . . ,Xn)

I Like usual polynomials, only difference X1X2 6= X2X1 EAT 6=TEA

I Evaluation in symmetric matrices
I p = 1 + 2X 2

1 + X2X1 − X1X2,
I A = (A1,A2) ∈ (SRs×s)2

}
p(A) = 1s + 2A2

1 + A2A1 − A1A2

I NC polynomial optimization

pmin = min
(ϕ,A)
{〈ϕ,p(A)ϕ〉 | ‖ϕ‖ = 1}

I pmin is the smallest eigenvalue
p(A) can attain over all A

We can add polynomial
constraints like g(A) � 0
to define a region where
we want to optimize p
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Where is the SDP?

I We can reformulate our nc optimization problem

pmin = min
(ϕ,A)
{〈ϕ,p(A)ϕ〉 | ‖ϕ‖ = 1}

using nc sums of squares

I This will turn out to be a semidefinite program

But first, let’s look at applications
of nc polynomial optimization
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Application: Quantum Chemistry

Compute ground state energy of atoms
I Molecule of N electrons that can occupy M orbitals
I Each orbital associated with creation/anihilation operators a†

i ,ai

I Pairwise interaction described by hijkl

min
(a,a†,ϕ)

〈
ϕ,
∑
ijkl

hijkla
†
i a†

j ak alϕ
〉

s.t. ‖ϕ‖ = 1

{ai ,aj} = {a†
i ,a

†
j } = 0

{a†
i ,aj} = δij(∑
i

a†
i ai − N

)
ϕ = 0

←
〈
ϕ,p(a,a†)ϕ

〉
← ‖ϕ‖ = 1]

additional
constraints
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Application: Systems Control

I Linear closed loop system with unknown feedback G

system F

feedback G

eu y
−
v

Math. System
#̇»x (t) = A #»x (t)+B #»u ,
#»y (t) = C #»x (t)

I Goal Find G which stabilizes the system

Lyapunov1892

A system ẋ(t) = Ax(t) is stable if there is a P � 0 with AtP + PA ≺ 0

NC polynomial with
matrix coefficients

I Lyapunov’s idea can be extended to our problem: Riccati equations

I Optimization problem is first a feasibility problem
I Can be refined by optimizing a specific singular value

I For a uniform strategy to get G we have to work free of dimensions
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Application: Quantum Correlations

Alice Bob

ϕ

I Two separated systems A = M1 ∪ · · · ∪Mn
and B = Mn+1 ∪ · · · ∪MN

I Measurements of Mi described by operators
Ei performed on a joint quantum state ϕ

I Correlations between A and B: Joint probabilities P(i , j) = 〈ϕ,EiEjϕ〉

I Violation of Bell inqualities
I Linear combination of (joint) probabilities
I Get inequalities by considering classical random variables
I Want to find violations using quantum setup

max
(E,ϕ)

〈
ϕ,
∑
i,j

cijEiEjϕ
〉

s.t. ‖ϕ‖ = 1
EiEj = δij for i , j ∈ Mk∑
i∈Mk

Ei = 1

[Ei ,Ej ] = 0 for i ∈ A, j ∈ B

←
〈
ϕ,p(E)ϕ

〉
← ‖ϕ‖ = 1]

measurement

]A/B separated
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