Estimating electricity network reliability using a splitting method

Wander Wadman, Jason Frank, Daan Crommelin

Scientific Meeting

June 21, 2013

Grid = electrical power network

(日) (同) (三) ()

Grid = electrical power network

 $V_{\min} < |V(t)| < V_{\max}$, at all N nodes for all t $|I(t)| < I_{\max}$, at all connections for all t

Grid reliability indices

- Probability
- Expected duration
- Expected number
- Expected severity

of constraint violations during a week/month/...

Grid reliability indices

Probability

- Expected duration
- Expected number
- Expected severity

of constraint violations during a week/month/...

Aim Find these indices!

Estimate $\mathbb{P}(violation)$

- Simulate stochastic process
- Oerive all voltages/currents
- Oheck constraints

Estimate $\mathbb{P}(violation)$

for all MC samples

- Simulate stochastic process
- Oerive all voltages/currents
- Oheck constraints

end

 $\mathsf{Estimate} = \tfrac{\#\mathsf{violations}}{\#\mathsf{MC} \; \mathsf{samples}}$

э

Splitting technique

・ロン ・聞と ・ ヨン ・ ヨン

э

Splitting technique

A ►

1

Splitting technique

Estimate $\mathbb{P}(\text{violation})$ by

$$\prod_{k} R_k / N_{k-1} = \frac{1}{1} \frac{1}{2} \frac{1}{2} = \frac{1}{4}.$$

Splitting technique

Estimate $\mathbb{P}(violation)$ by

$$\prod_{k} R_k / N_{k-1} = \frac{1}{1} \frac{1}{2} \frac{1}{2} = \frac{1}{4}.$$

Workload experiment Crude MC ~ 79 \times Splitting