Estimating electricity network reliability using a splitting method

Wander Wadman, Jason Frank, Daan Crommelin

Scientific Meeting

June 21, 2013
Grid = electrical power network
Grid = electrical power network

\[V_{\text{min}} < |V(t)| < V_{\text{max}}, \quad \text{at all } N \text{ nodes for all } t \]
\[|I(t)| < I_{\text{max}}, \quad \text{at all connections for all } t \]
Grid reliability indices

- Probability
- Expected duration
- Expected number
- Expected severity

of constraint violations during a week/month/...
Grid reliability indices

- **Probability**
- Expected duration
- Expected number
- Expected severity

of constraint violations during a week/month/...

Aim Find these indices!
Motivation

Crude Monte Carlo

Splitting technique

Estimate $P(\text{violation})$

1. Simulate stochastic process
2. Derive all voltages/currents
3. Check constraints
Estimate $\mathbb{P}(\text{violation})$

for all MC samples

1. Simulate stochastic process
2. Derive all voltages/currents
3. Check constraints

end

Estimate = $\frac{\#\text{violations}}{\#\text{MC samples}}$
Splitting technique

Estimating electricity network reliability using a splitting method
Splitting technique

Motivation

Crude Monte Carlo Splitting technique

\[l_1, l_2, l_3 \]

\[T_1, T_2, T_3 \]

\[t \]

\[h(X(t)) \]

Estimate \(P(violation) \) by

\[\prod_{k} R_{k} / N_{k - 1} = 1 \]

Workload experiment

Crude MC \(\sim 79 \times \) Splitting

W. Wadman

Estimating electricity network reliability using a splitting method
Splitting technique

Estimate $\mathbb{P}(\text{violation})$ by

$$\prod_{k} \frac{R_k}{N_{k-1}} = \frac{111}{122} = \frac{1}{4}.$$
Splitting technique

Motivation

Crude Monte Carlo Splitting technique

Estimate $\mathbb{P}(\text{violation})$ by

$$\prod_{k} R_k/N_{k-1} = \frac{111}{122} = \frac{1}{4}.$$

Workload experiment

Crude MC $\sim 79 \times$ Splitting