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What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization
over the cone of positive semidefinite matrices.

LP SDP
vector variable x € R” ~»  symmetric matrix variable X
x>0 X =0 [positive semidefinite]

max, (¢, x)
LP s.t. aj,x>:bj (j:].,,m)

x>0
Supx <C7X>

SDP st. (A, X)=b (i=1,...,m)
X >0

There are efficient algorithms to solve SDP (up to any precision).



Geometrically

LP SDP



LP vs. SDP

1940’s: Dantzig simplex algorithm for LP.

Works well in practice, but is it efficient (= poly-time)?

From the 1980’s: first efficient algorithms:

Khachiyan: ellipsoid method (not practical)

Karmarkar, Nemirovski-Nesterov: interior-point algorithms (practical)
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LP is widely used, also in industrial applications.

SDP has a greater modeling power:

sensor network localization [SDP with rank constraint]
statistics, finance [matrix completion]
combinatorial optimization  [best known approximation algorithms]
sums of squares of polynomials [real algebraic geometry]

quantum information

... but still needs to be upgraded for large scale problems.



Sensor network localization

Reconstruct the positions of n objects in (say) the 3-dimensional space
from partial information on their pairwise distances dj; (ij € E).

Molecular conformation problem

Find vectors uy, - -+ , u, € R® such that |lu; — uj|j» = d; Vij € E.

Equivalently: Find a positive semidefinite matrix X such that

Xii + Xj — 2Xj = dj Vij € E and rank X < 3.

~~ SDP with a rank constraint



Matrix completion

Can one complete a given partial matrix to a fully specified
positive semidefinite matrix?
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of specified maximum rank?

» Applications in statistics, finance
» Gives bounds for ranks of optimal solutions of arbitrary SDP's
» Links to topological graph parameters

PhD thesis of Antonios Varvitsiotis, 25 November 2013



Some combinatorial problems over graphs

e Chromatic number © minimum
number of colors needed to properly color
the nodes of G.

e Clique number w(G): maximum cardi-
nality of a set of pairwise adjacent nodes

(clique).
e Independence number o(G): maxi-
=3 w=2 mum cardinality of a set of pairwise non-
a=4 adjacent nodes (independent set).
w(G) < a(G) <

, a, w are NP-hard.



LP vs. SDP approach

Polytope P:: convex hull of characteristic vectors x° € {0,1}" of
independent sets

a(G) = max{Zx,- i X € Pc;}

iev

a(G) <lp= max{Zx,- x>0, Zx,- < 1V cliques C}

iev ieC
a(G) <sdp = max Zx- N =0, X; =0VijeE,X;=x Vi
a — - 1 - X X Y U] J s SN 1
ieVv
“Sandwich inequalities” of Lovasz [1979]: [sdp(G) = 9¥(G)]
a(G) <sdp <1Ip <

Only known efficient algorithm for graphs with a(G) = x(G) !



Fundamental idea: Lift to higher dimensional space

o New variables Xj; modeling pairwise products x;x; of original variables
e Linearize higher products xixjxy, xixjxixj, ...
~ hierarchy of tighter SDP relaxations

~~ best bounds for graph coloring, geometric sphere packing, codes.
[Gijswijt, Gvozdenovi¢, Laurent, Regts, Schrijver, Vallentin]



Classical and quantum information

Zero-error source-channel communication over a noisy channel:
» Shannon capacity: C(G) = sup,, Lloga(G™)
G: confusability graph of the channel
» Witsenhausen rate: R(G) =infy tlog x(G™)

G: characteristic graph of the source

[Lovasz'79, Nayak et al.'06]: C(G) < log9(G) < R(G). Equality for Cs.

Does quantum entanglement help?

Entangled parameters: o, x*, C*, R*, defined by
replacing 0/1 valued variables by positive operator valued variables.

Sandwich inequalities and separation results:

C(G) < C*(G) < logd(G) < R*(G) < R(G)

joint work with Algorithms and Complexity group
[Briét, Buhrman, de Wolf, Gijswijt, Laurent, Piovesan, Scarpa]



Positive polynomials and sums of squares

Polynomial optimization problem:

millg p(x)=max{\ : p— \ is positive on K},
xe

K={x:qi(x) >0, ,gm(x) > 0} is a semi-algebraic set.

1. Testing whether a polynomial p is positive is NP-hard.
2. If p is a sum of squares of polynomials then p is positive.

3. One can test whether p is a sum of squares with SDP.

[Schmiidgen 91, Putinar 93] show s.o.s. positivity certificates on K:
If p is strictly positive on K compact, then p =sgp +siq1 + - + SmUm
for some s, - - , s, sums of squares of polynomials.
~~ hierarchies of SDP relaxations, computing the global optimum

~~ algorithms for computing real roots of polynomial equations
[Lasserre, Laurent, Rostalski]



This goes back to Hilbert

Hilbert [1888]: Every positive polynomial in n
variables and even degree d is a sum of squares
of polynomials if and only if n=1, or d = 2,
or (n=2andd=4).

Hilbert's 17th problem [1900]: /s every positive
polynomial is a sum of squares of rational
functions?

Artin [1927]: Yes

Motzkin [1960]:

p= X4y2+X2y4_3X2y2+1

e U

is positive, but not a
sum of squares.




Some new directions

» Use sums of squares of polynomials in non-commutative variables
to design efficient approximations for quantum graph parameters.

Joint project N&O with Algorithms and Complexity

» Deal with integral variables in polynomial optimization.

Starting MINO (Mixed Integer Nonlinear Optimization) EU Initial
Training Network.

Planned collaboration with Life Sciences.

» Joint seminar on the use of SDP hierarchies in combinatorial
optimization (with Nikhil Bansal, TUE/CWI).



