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What is semidefinite programming?

Semidefinite programming (SDP) is linear optimization
over the cone of positive semidefinite matrices.

LP SDP
vector variable x ∈ Rn  symmetric matrix variable X

x ≥ 0 X � 0 [positive semidefinite]

LP
maxx 〈c , x〉
s.t. 〈aj , x〉 = bj (j = 1, . . . ,m)

x ≥ 0

SDP
supX 〈C ,X 〉
s.t. 〈Aj ,X 〉 = bj (j = 1, . . . ,m)

X � 0

There are efficient algorithms to solve SDP (up to any precision).



Geometrically

LP SDP



LP vs. SDP

1940’s: Dantzig simplex algorithm for LP.

Works well in practice, but is it efficient (= poly-time)?

From the 1980’s: first efficient algorithms:

Khachiyan: ellipsoid method (not practical)

Karmarkar, Nemirovski-Nesterov: interior-point algorithms (practical)

LP is widely used, also in industrial applications.

SDP has a greater modeling power:

I sensor network localization [SDP with rank constraint]

I statistics, finance [matrix completion]

I combinatorial optimization [best known approximation algorithms]

I sums of squares of polynomials [real algebraic geometry]

I quantum information

. . . but still needs to be upgraded for large scale problems.



Sensor network localization

Reconstruct the positions of n objects in (say) the 3-dimensional space
from partial information on their pairwise distances dij (ij ∈ E ).

Molecular conformation problem

Find vectors u1, · · · , un ∈ R3 such that ‖ui − uj‖2 = dij ∀ij ∈ E .

Equivalently: Find a positive semidefinite matrix X such that

Xii + Xjj − 2Xij = d2
ij ∀ij ∈ E and rank X ≤ 3.

 SDP with a rank constraint



Matrix completion

Can one complete a given partial matrix to a fully specified
positive semidefinite matrix?


1 0 ? −1
0 1 1 ?
? 1 1 0
−1 ? 0 1

Yes: ? =0


1 0 ? −1
0 1 1 ?
? 1 1 1
−1 ? 1 1

No!

of specified maximum rank?

I Applications in statistics, finance

I Gives bounds for ranks of optimal solutions of arbitrary SDP’s

I Links to topological graph parameters

PhD thesis of Antonios Varvitsiotis, 25 November 2013



Some combinatorial problems over graphs

χ = 3 ω = 2
α = 4

• Chromatic number χ(G ): minimum
number of colors needed to properly color
the nodes of G .

• Clique number ω(G ): maximum cardi-
nality of a set of pairwise adjacent nodes
(clique).

• Independence number α(G ): maxi-
mum cardinality of a set of pairwise non-
adjacent nodes (independent set).

ω(G ) ≤ χ(G ) α(G ) ≤ χ(G )

χ, α, ω are NP-hard.



LP vs. SDP approach

Polytope PG : convex hull of characteristic vectors χS ∈ {0, 1}V of
independent sets

α(G ) = max

{∑
i∈V

xi : x ∈ PG

}

α(G ) ≤ lp = max

{∑
i∈V

xi : x ≥ 0,
∑
i∈C

xi ≤ 1 ∀ cliques C

}

α(G )≤ sdp = max

{∑
i∈V

xi :

(
1 xT

x X

)
� 0, Xij = 0 ∀ij ∈ E ,Xii = xi ∀i

}

“Sandwich inequalities” of Lovász [1979]: [sdp(G ) = ϑ(G )]

α(G ) ≤ sdp ≤ lp ≤ χ(G )

Only known efficient algorithm for graphs with α(G ) = χ(G ) !



Fundamental idea: Lift to higher dimensional space

• New variables Xij modeling pairwise products xixj of original variables

• Linearize higher products xixjxk , xixjxkxl , . . .

 hierarchy of tighter SDP relaxations

 best bounds for graph coloring, geometric sphere packing, codes.
[Gijswijt, Gvozdenović, Laurent, Regts, Schrijver, Vallentin]



Classical and quantum information

Zero-error source-channel communication over a noisy channel:

I Shannon capacity: C (G ) = supm
1
m logα(Gm)

G : confusability graph of the channel

I Witsenhausen rate: R(G ) = infm
1
m logχ(Gm)

G : characteristic graph of the source

[Lovász’79, Nayak et al.’06]: C (G ) ≤ log ϑ(G ) ≤ R(G ). Equality for C5.

Does quantum entanglement help?

Entangled parameters: α∗, χ∗, C∗, R∗, defined by

replacing 0/1 valued variables by positive operator valued variables.

Sandwich inequalities and separation results:

C (G ) ≤ C∗(G ) ≤ log ϑ(G ) ≤ R∗(G ) ≤ R(G )

joint work with Algorithms and Complexity group

[Briët, Buhrman, de Wolf, Gijswijt, Laurent, Piovesan, Scarpa]



Positive polynomials and sums of squares

Polynomial optimization problem:

min
x∈K

p(x)= max{λ : p − λ is positive on K},

K = {x : q1(x) ≥ 0, · · · , qm(x) ≥ 0} is a semi-algebraic set.

1. Testing whether a polynomial p is positive is NP-hard.

2. If p is a sum of squares of polynomials then p is positive.

3. One can test whether p is a sum of squares with SDP.

[Schmüdgen 91, Putinar 93] show s.o.s. positivity certificates on K :

If p is strictly positive on K compact, then p = s0 + s1q1 + · · ·+ smqm

for some s0, · · · , sm sums of squares of polynomials.

 hierarchies of SDP relaxations, computing the global optimum

 algorithms for computing real roots of polynomial equations
[Lasserre, Laurent, Rostalski]



This goes back to Hilbert

Hilbert [1888]: Every positive polynomial in n
variables and even degree d is a sum of squares
of polynomials if and only if n = 1, or d = 2,
or (n = 2 and d = 4).

Hilbert’s 17th problem [1900]: Is every positive
polynomial is a sum of squares of rational
functions?

Artin [1927]: Yes
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Motzkin [1960]:

p = x4y2+x2y4−3x2y2+1

is positive, but not a
sum of squares.



Some new directions

I Use sums of squares of polynomials in non-commutative variables
to design efficient approximations for quantum graph parameters.

Joint project N&O with Algorithms and Complexity

I Deal with integral variables in polynomial optimization.

Starting MINO (Mixed Integer Nonlinear Optimization) EU Initial
Training Network.

Planned collaboration with Life Sciences.

I Joint seminar on the use of SDP hierarchies in combinatorial
optimization (with Nikhil Bansal, TUE/CWI).


