Giannicola Scarpa

* Quantum state: d-dimensional vector

- * Quantum state: d-dimensional vector
- * Shared state can be entangled (quantum correlation)

- * Quantum state: d-dimensional vector
- * Shared state can be entangled (quantum correlation)
- * Use entanglement as a resource for...

(Quantum) TELEPORTATION!

(d² possible rotations)

Color names if you're a girl...

Maraschino	
Cayenne	
Maroon	
Plum	
Eggplant	
Grape	
Orchid	
Lavender	
Carnation	
Strawberry	
Bubblegum	
Magenta	
Salmon	
Tangerine	
Cantaloupe	
Banana	
Lemon	
Honeydew	
Lime	
Spring	
Clover	
Fern	
Moss	
Flora	
Sea Foam	
Spindrift	
Teal	
Sky	
Turquoise	

Color names if you're a girl...

Turquoise

Color names if you're a guy...

Doghouse Diaries
"We take no as an answer."

Color names if you're a girl...

Color names if you're a guy...

Doghouse Diaries
"We take no as an answer."

Color names if you're a girl...

Turquoise

Color names if you're a guy...

Doghouse Diaries
"We take no as an answer."

Color names if you're a girl...

Color names if you're a guy...

HOW MANY
COLORS CAN
ALICE SELECT
WITHOUT RISK OF
CONFUSION ON
BOB'S SIDE?

Doghouse Diaries
"We take no as an answer."

NOISY COMMUNICATION CHANNEL

INPUT/OUTPUT GRAPH

NOISY COMMUNICATION CHANNEL

INPUT/OUTPUT GRAPH

NOISY COMMUNICATION CHANNEL

NOISY COMMUNICATION CHANNEL

HOW MANY
COLORS CAN
ALICE SELECT
WITHOUT RISK OF
CONFUSION ON
BOB'S SIDE?

NOISY COMMUNICATION CHANNEL

HOW MANY
COLORS CAN
ALICE SELECT
WITHOUT RISK OF
CONFUSION ON
BOB'S SIDE?

NOISY COMMUNICATION CHANNEL

HOW MANY
COLORS CAN
ALICE SELECT
WITHOUT RISK OF
CONFUSION ON
BOB'S SIDE?

NOISY COMMUNICATION CHANNEL

HOW MANY
COLORS CAN
ALICE SELECT
WITHOUT RISK OF
CONFUSION ON
BOB'S SIDE?

THE INDEPENDENCE NUMBER (NP-hard problem)

* Zero-error Shannon capacity: average #messages per use of the channel

* α: independence number

- * α: independence number
- * d: minimum dimension of orthogonal representation: vectors v(u), v(w), ... orthogonal if (u,w) is an edge

- * α: independence number
- * d: minimum dimension of orthogonal representation: vectors v(u), v(w), ... orthogonal if (u,w) is an edge

CONFUSABILITY GRAPH of the channel

* Quantum states are vectors

- * α: independence number
- * d: minimum dimension of orthogonal representation: vectors v(u), v(w), ... orthogonal if (u,w) is an edge

- * Quantum states are vectors
- * Distinguishable if orthogonal

- * α: independence number
- * d: minimum dimension of orthogonal representation: vectors v(u), v(w), ... orthogonal if (u,w) is an edge

- * Quantum states are vectors
- * Distinguishable if orthogonal
- * **Teleport** *d*-dim state by sending **one** out of **d**² classical messages

Msg 1

WRAPPING UP

* If a graph has sufficiently small d and large α

- * If a graph has sufficiently small d and large α
 - * Then using teleportation we can improve over the (zero-error) Shannon capacity!

- * If a graph has sufficiently small d and large α
 - * Then using teleportation we can improve over the (zero-error) Shannon capacity!
- * Our result: unbounded improvement using a family of Hadamard graphs

- * If a graph has sufficiently small d and large α
 - * Then using teleportation we can improve over the (zero-error) Shannon capacity!
- * Our result: unbounded improvement using a family of Hadamard graphs
- * Many links with classical graph theory (e.g. quantum independence number)

WRAPPING UP

- * If a graph has sufficiently small d and large α
 - * Then using teleportation we can improve over the (zero-error) Shannon capacity!
- * Our result: unbounded improvement using a family of Hadamard graphs
- * Many links with classical graph theory (e.g. quantum independence number)

Thanks!