Centrum Wiskunde & Informatica

Robust Secret Sharing

Serge Fehr

CWI Amsterdam www.cwi.nl/~fehr

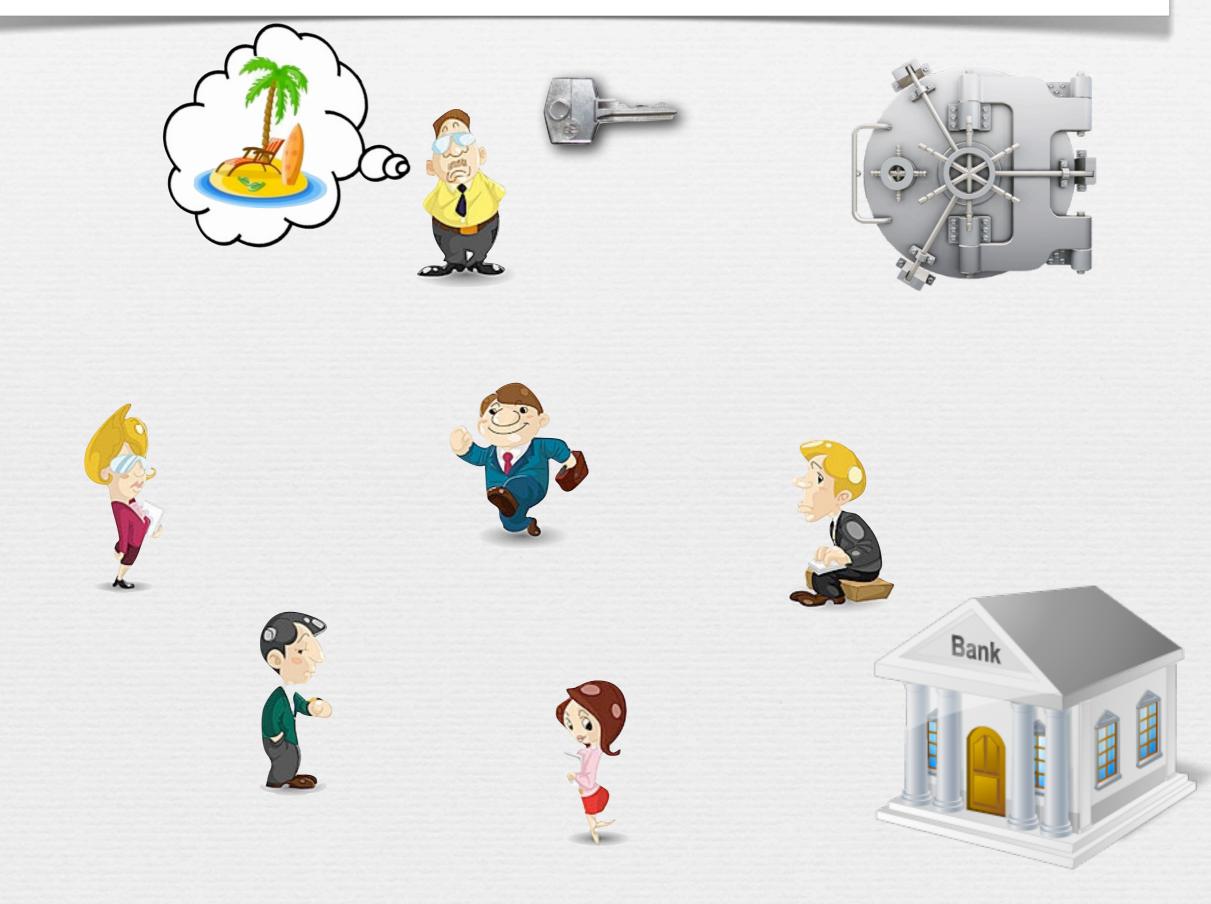
Based on joint work with:

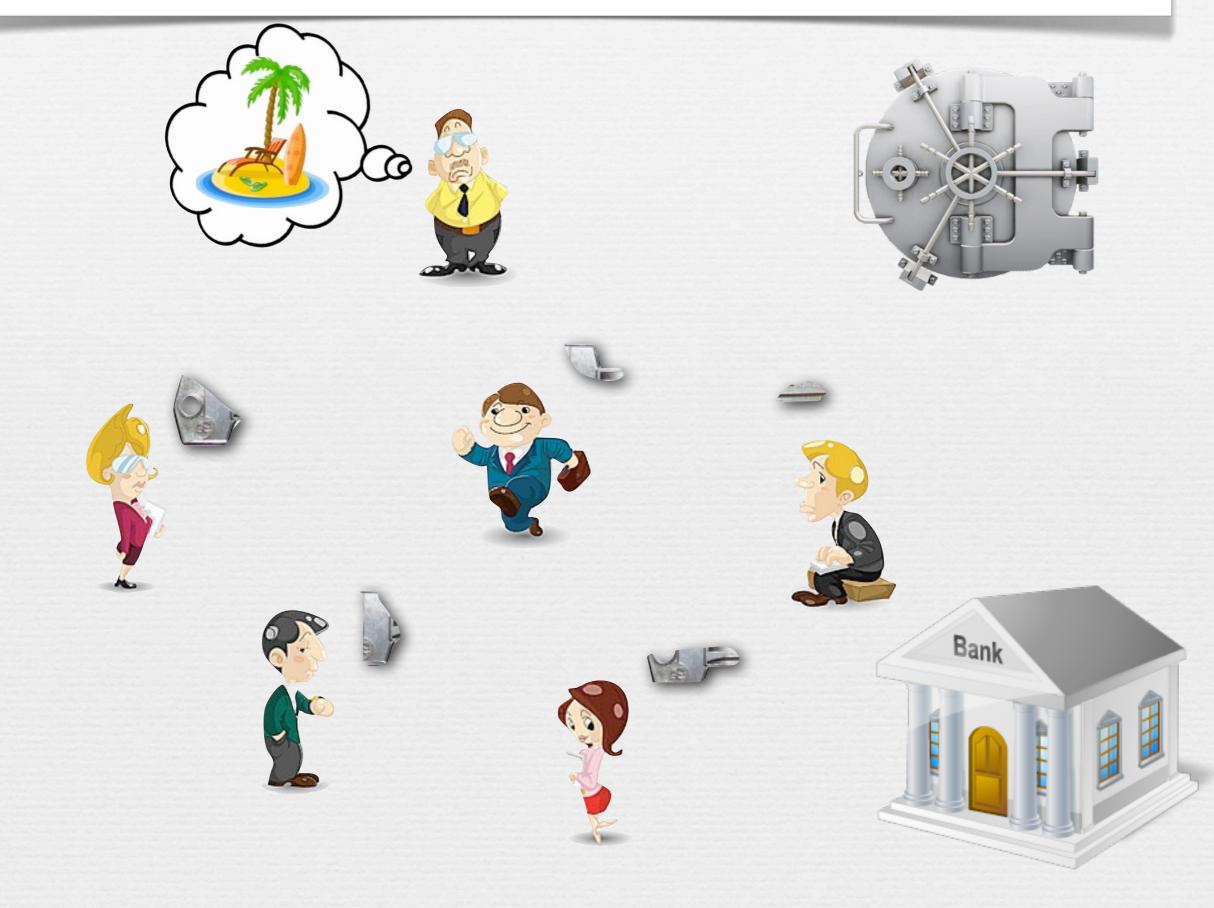
Alfonso Cevallos (Leiden University / EPFL) Rafail Ostrovsky (UCLA) Yuval Rabani (Hebrew University of Jerusalem)

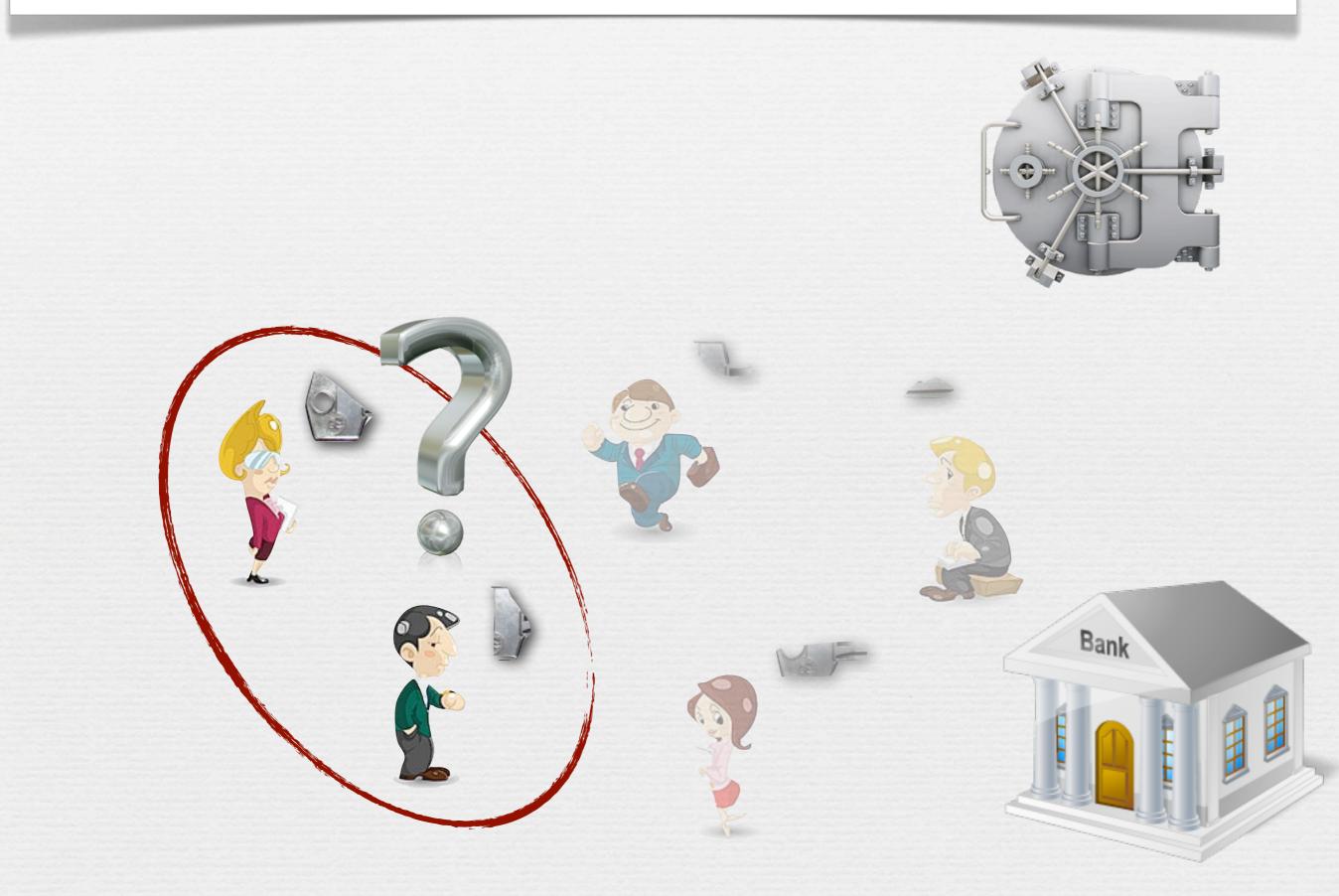
"Decentralizing Cryptographic Power"

- Scryptography relies on cryptographic keys
- Solution Owner of the key has all the power to
 - decrypt ciphertexts, or
 - digitally sign messages,
 - etc.
- Vulnerable to:
 - dishonest owner who misuses the key
 - hackers breaking into the computer of the owner
 - unavailability of the owner
 - loss of the key

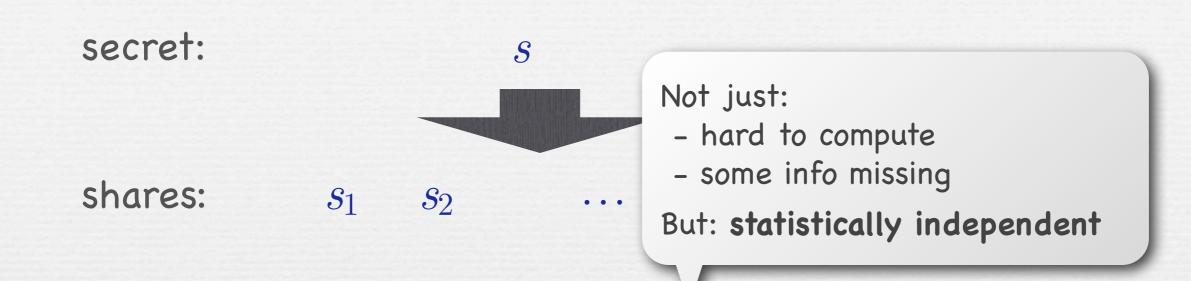
Goal: decentralize cryptographic power







(t-out-of-n) Secret Sharing



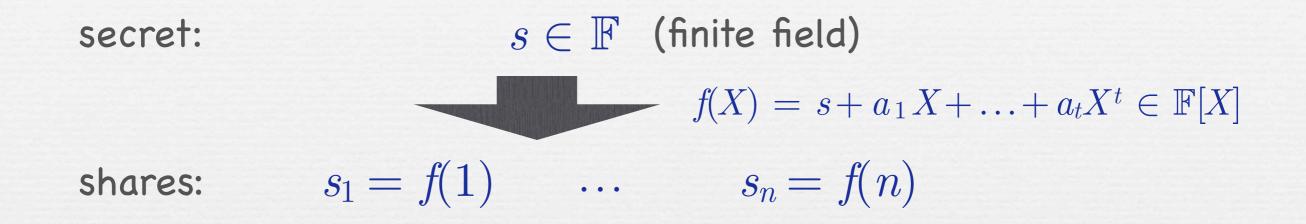
 $\stackrel{\text{\tiny \ensuremath{\wp}}}{=}$ **Privacy**: any t shares give no information on s

 s_{i_1} s_{i_2} \ldots s_{i_t} \implies ?

Reconstructability: any t+1 shares uniquely determine s

 s_{i_1} s_{i_2} \cdots $s_{i_{t+1}}$ \Longrightarrow s

Shamir's Secret Sharing Scheme [Sha79]

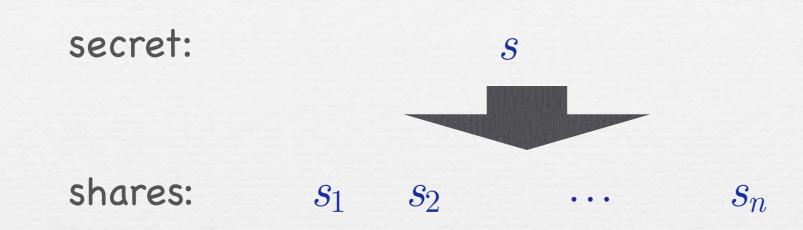


Privacy and reconstructability follow from Lagrange interpolation

Additional concern:

Dishonest "share holders" that hand in incorrect shares.

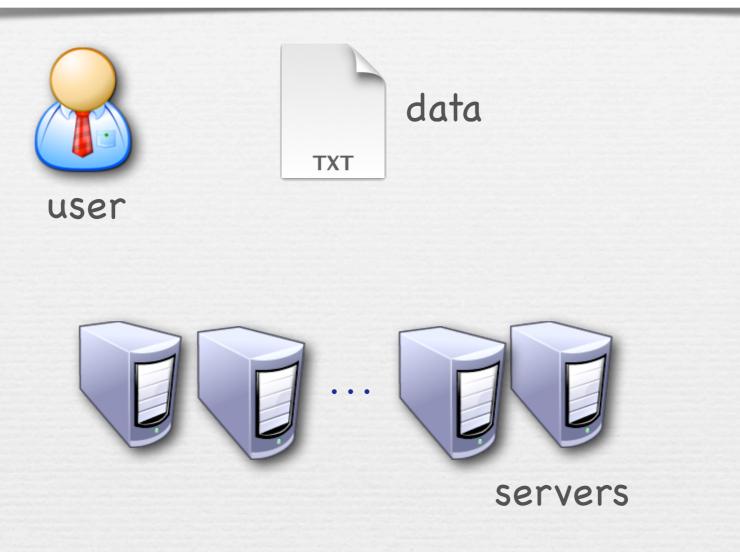
Robust Secret Sharing

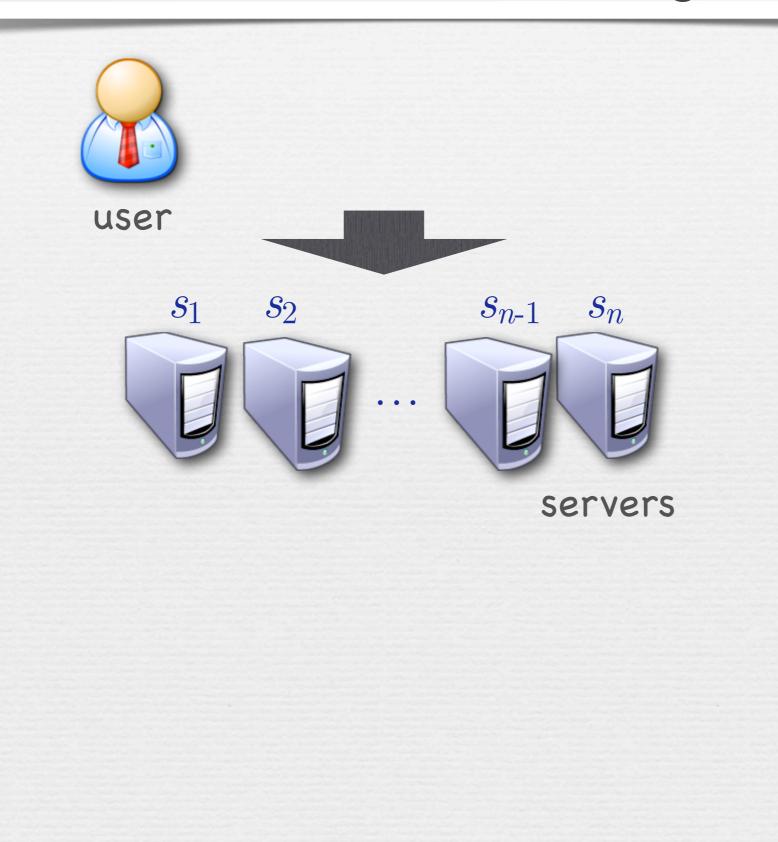


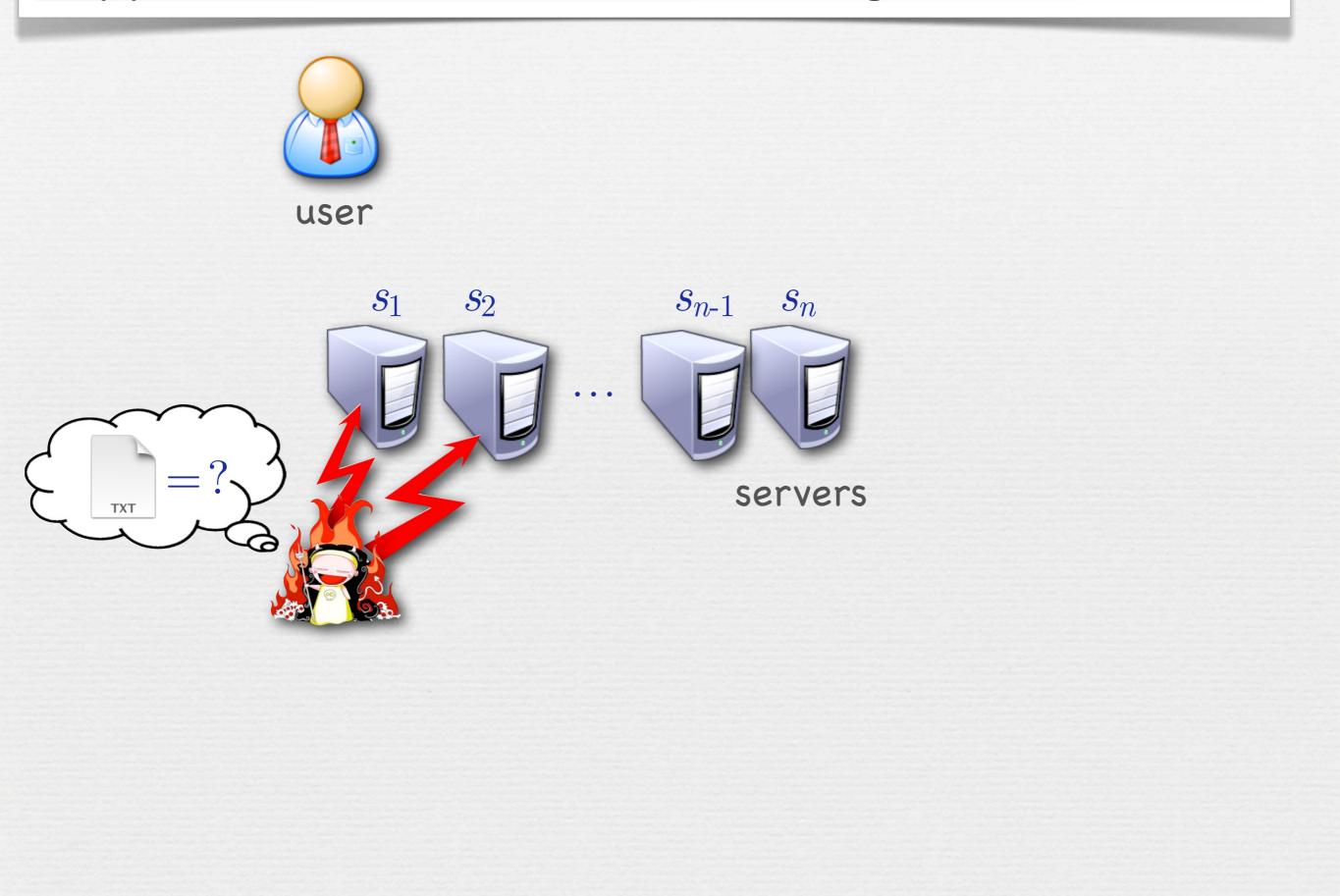
Privacy: any t shares give no information on s

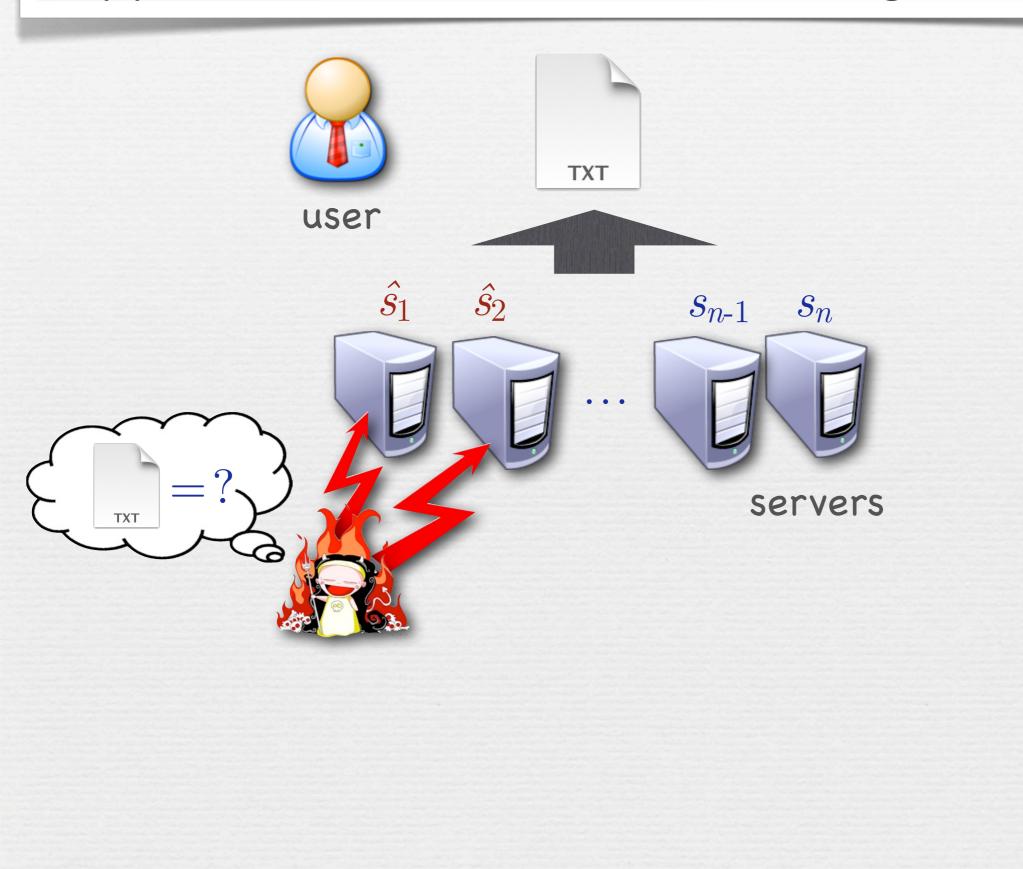
$$s_{i_1} \ldots s_{i_t} \longrightarrow ?$$

Solution Robust reconstructability:
the set of all
$$n$$
 shares determines s , even if t of them are faulty
 $\hat{s_1} \cdots \hat{s_t} s_{t+1} \cdots s_n \longrightarrow s$



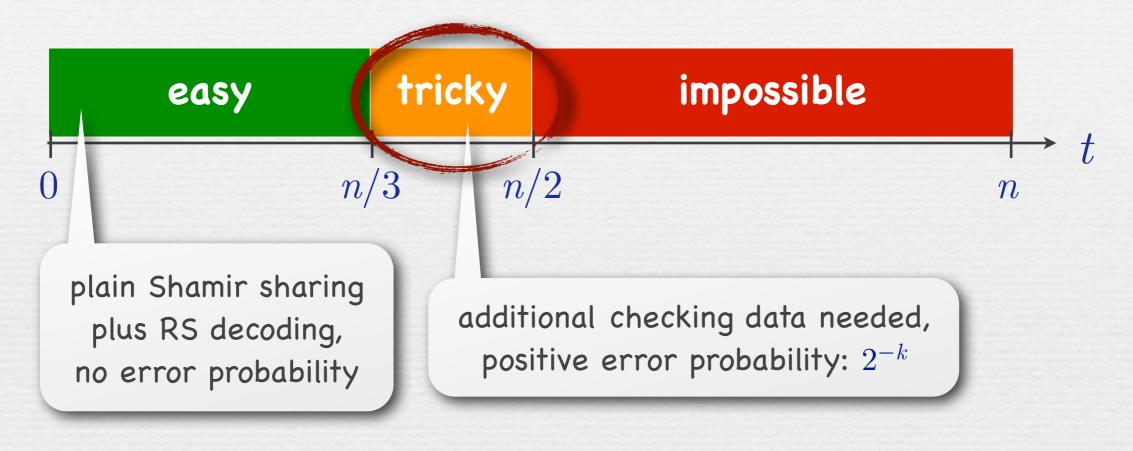






(Im)possibility

This talk: n = 2t+1, with information-theoretic security



Known Schemes

- Rabin & Ben-Or (1989):
 - Overhead in share size: $ilde{O}(k \cdot n)$ $ext{ }$
 - Computational complexity: poly(k,n)

Cramer, Damgård & F (2001), based on Cabello, Padró & Sáez (1999):

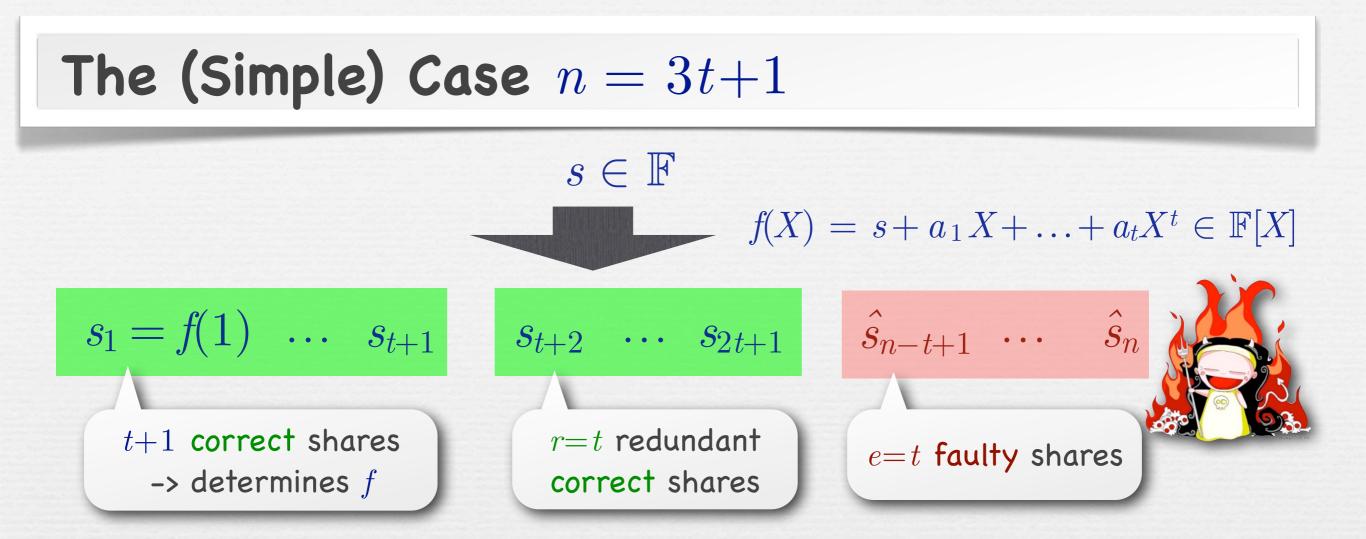
 (\mathbf{i})

 \bigcirc

- Overhead in share size: $\tilde{O}(k+n)$ \bigcirc (lower bound: $\Omega(k)$)
- Computational complexity: exp(n)
- Cevallos, F, Ostrovsky & Rabani (2012):
 - Overhead in share size: $\widetilde{O}(k+n)$ \bigcirc
 - Computational complexity: poly(k,n)

Further Outline

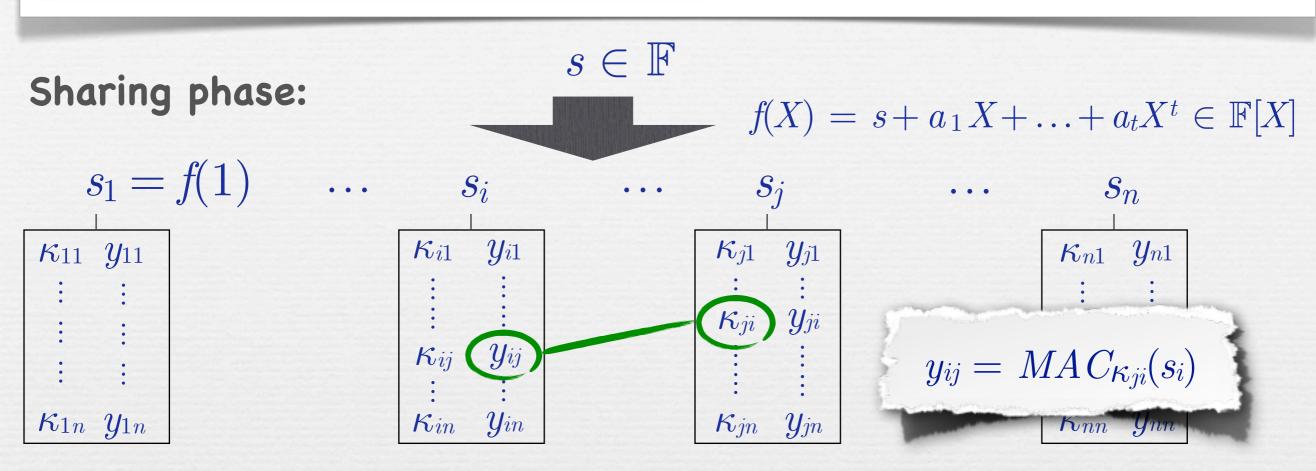
- Introduction
- From The (simple) case t < n/3
- Fine Rabin & Ben-Or scheme
- Fine CDF 2001 scheme
- Fine CFOR 2012 scheme, and discussion of proof
- Conclusion



Reed-Solomon decoding: If $e \leq r$ (satisfied here) then

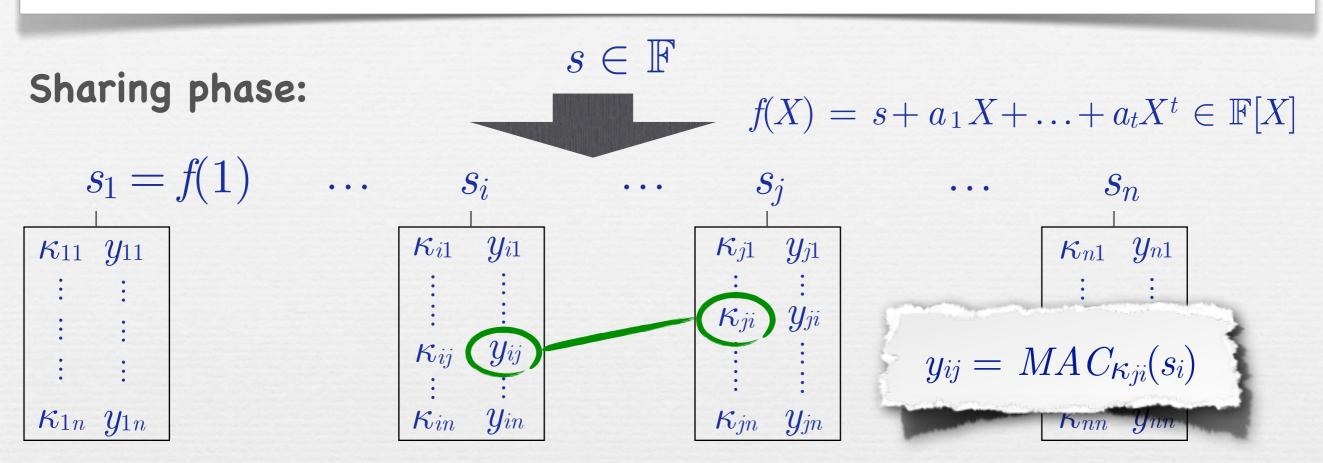
- f is uniquely determined from s_1, \ldots, \hat{s}_n
- f can be efficiently computed (Berlekamp-Welch)

The Rabin & Ben-Or Scheme (n = 2t+1)



- $\stackrel{\forall}{\Rightarrow}$ MAC security: for any $\hat{s}_i \neq s_i$ and \hat{y}_{ij} : $P[\hat{y}_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)] \leq \varepsilon$.
- Example: $\kappa_{ij} = (\alpha_{ij}, \beta_{ij}) \in \mathbb{F}^2$ and $y_{ij} = MAC_{\kappa_{ji}}(s_i) = \alpha_{ij} \cdot s_i + \beta_{ij}$.
- $\stackrel{\scriptscriptstyle \odot}{=}$ For error probability $\varepsilon \leq 2^{-k}$:
 - bit size $|\kappa_{ij}|, |y_{ij}| \geq k$
 - overhead per share (above Shamir share): $\Omega(k \cdot n)$

The Rabin & Ben-Or Scheme (n = 2t+1)



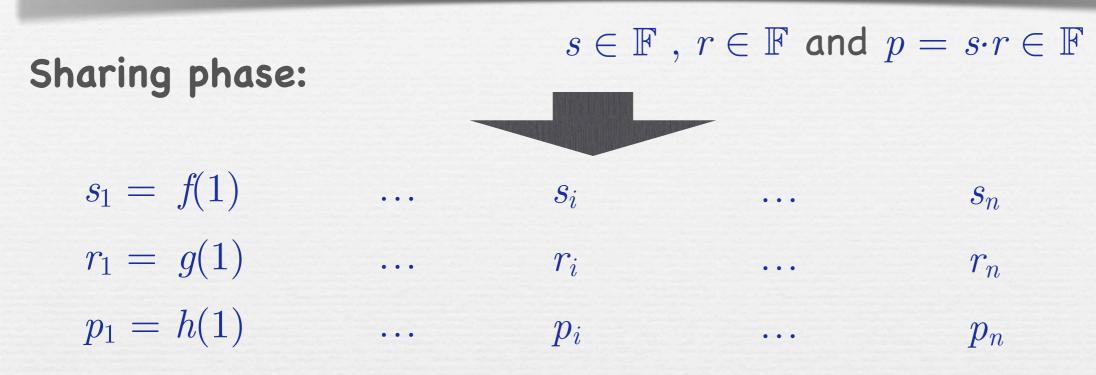
Reconstruction phase:

For every share s_i:

 accept s_i iff it is consistent with keys of ≥ t+1 players,
 (meaning #{j| y_{ij} = MAC_{Kji}(s_i)} ≥ t+1)

 Reconstruct s using the accepted shares s_i.

The CDF 2001 Scheme



Reconstruction phase:

For every $A \subset \{1, \dots, n\}$ with |A| = t+1:

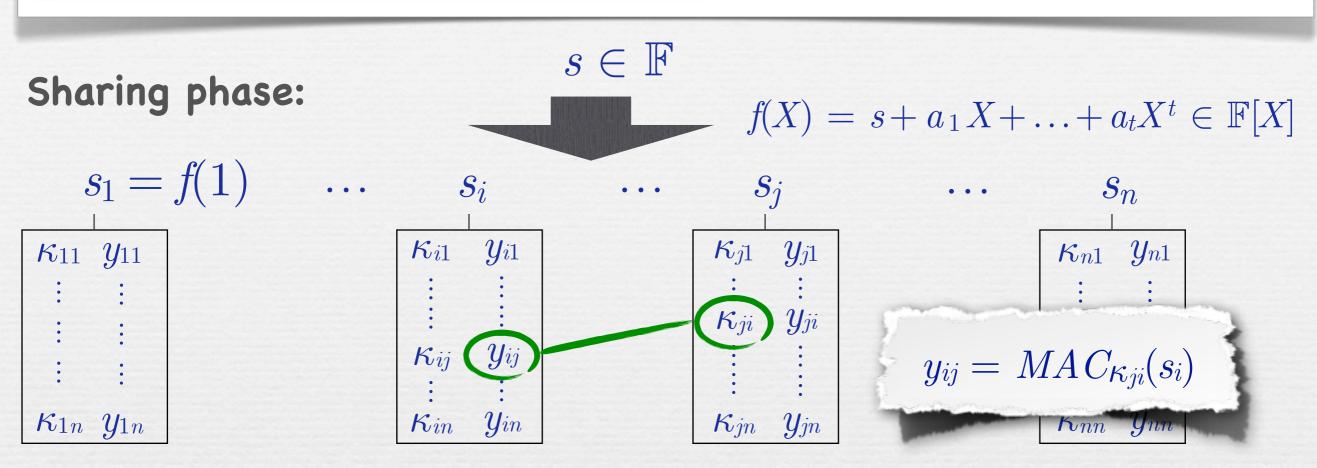
- reconstruct s', r' and p' from $(s_i)_{i \in A}$, $(r_i)_{i \in A}$ and $(p_i)_{i \in A}$
- if $s' \cdot r' = p'$ then output s' and halt

Note: Running time is exponential in n

Further Outline

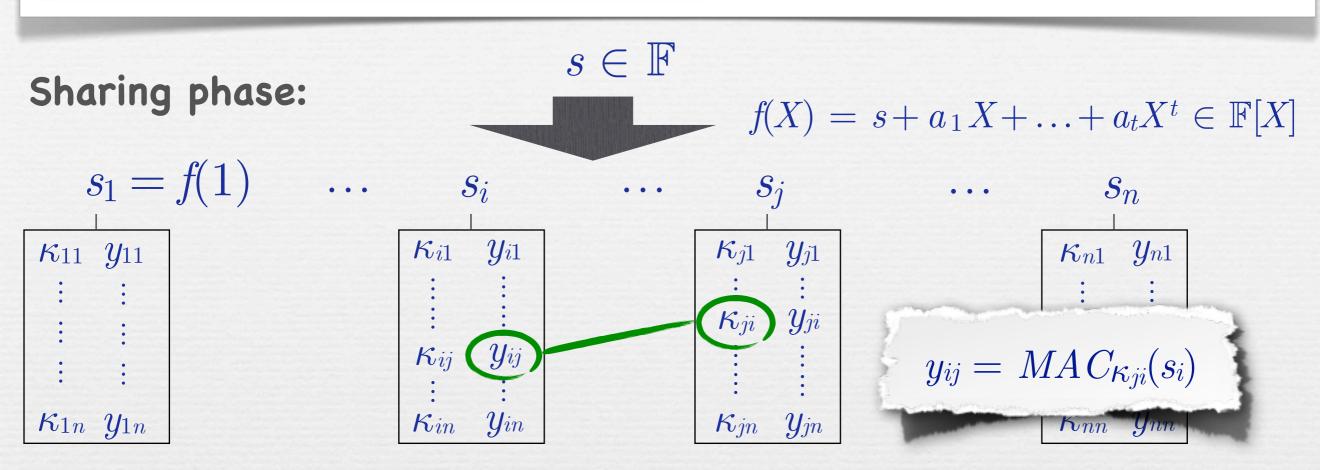
- Section Introduction
- Fine (simple) case t < n/3
- Fine Rabin & Ben-Or scheme
- Fine CDF 2001 scheme
- Fine CFOR 2012 scheme, and discussion of proof
- Second Conclusion

The CFOR 2012 Scheme



- Solution \mathbb{S} Use small tags and keys $|\kappa_{ij}|, |y_{ij}| = \tilde{O}(k/n+1)$ (instead of O(k))
- Gives: overhead per share: $n \cdot \tilde{O}(k/n+1) = \tilde{O}(k+n)$
- Problem:
 - MAC has weak security
 - incorrect shares may be consistent with some honest players
 - Rabin & Ben-Or reconstruction fails

The CFOR 2012 Scheme



- Solution Use small tags and keys $|\kappa_{ij}|, |y_{ij}| = \tilde{O}(k/n+1)$ (instead of O(k))
- Gives: overhead per share: $n \cdot \tilde{O}(k/n+1) = \tilde{O}(k+n)$
- Problem
 MAC Need: better reconstruction procedure
 - incorrect shares may be consistent with some honest players
 - Rabin & Ben-Or reconstruction fails

Improving the Reconstruct Procedure

Example: Say that

...

- s_1 is consistent with $\{1, ..., n\}$ -> accept s_1
- s_2 is consistent with $\{1, \dots, t+1\}$ -> accept s_2
- s_3 is consistent with $\{2, \dots, t+1\}$ -> reject s_3

- Rabin & Ben-Or reconstruction: accepts s_1 , s_2 etc.
- In our new reconstruction:
 - Notice: s₂ is consistent with < t honest players (as 3 is dishonest)
 => s₂ stems from dishonest player
 - Will reject s2

Improving the Reconstruct Procedure

Example: Say that

S3

9

- s_1 is consistent with $\{1, \dots, n\}$ -> accept s_1
- s_2 is consistent with $\{1, \dots, t+1\}$ -> accept s_2

Our new reconstruction:

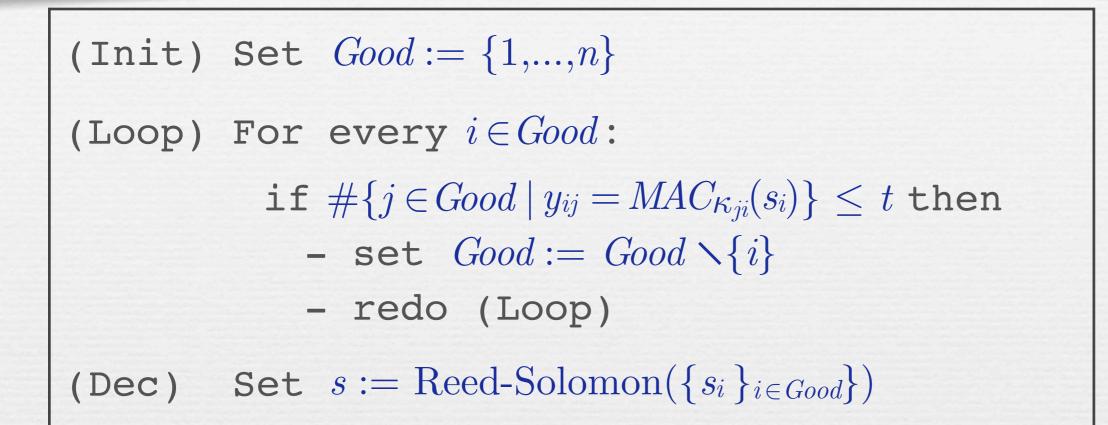
Whenever we reject a share, we Rabic reconsider the so-far accepted shares.

In ou Plus: Reed-Solomon decoding.

as 3 is dishonest)

- => s2 stems from dishonest player
- Will reject s₂

The New Reconstruction Procedure



Main Theorem. If MAC is ε -secure then our scheme is δ -robust with $\delta \leq e \cdot ((t+1) \cdot \varepsilon)^{(t+1)/2}$ (where $e = \exp(1)$).

Corollary. Using *MAC* with $|\kappa_{ij}|, |y_{ij}| = O(k/n + \log n)$ gives $\delta \leq 2^{-\Omega(k)}$ and overhead in share size $\tilde{O}(k+n)$.

What Makes the Proof Tricky

- 1. Optimal strategy for dishonest players is unclear
 - In Rabin & Ben-Or: an incorrect share for every dishonest player
 - Here: some dishonest players may hand in correct shares
 - Such a passive dishonest player:
 - stays "alive"
 - can support bad shares
 - The more such passive dishonest players:
 - The easier it gets for bad shares to survive
 - the more bad shares have to survive to fool RS decoding (# bad shares > # correct shares of dishonest players)
 - Optimal trade-off: unclear

What Makes the Proof Tricky

- 2. Circular dependencies
 - Solution Whether $\hat{s_i}$ gets accepted depends on whether $\hat{s_j}$ gets accepted ...
 - 🗳 ... and vice versa
 - Cannot analyze individual bad shares
 - Figure 1 If we try, we run into a circularity

Summary

First robust secret sharing scheme for n=2t+1 , with

- small overhead $\tilde{O}(k+n)$ in share size
- efficient sharing and reconstruction procedures
- Scheme is simple and natural adaptation of Rabin & Ben-Or
- Proof is non-standard and non-trivial
- Gpen problem:
 - Scheme with overhead O(k) (= proven lower bound)
- Solution Note:
 - CDF and CFOR have a $\Omega(n)$ gap (for different reasons)
 - Not known if this is inherent or not.