Perfect Estimation with Imperfect Samples

Chang-Han Rhee

Centrum Wiskunde & Informatica

Scientific Meeting, CWI, November 27, 2015

Joint work with Peter W. Glynn

Monte Carlo Methods in Lay Terms

Repetitive random experiments

e.g. Coin flip: want to estimate P(Head)

- Flip the coin 100 times
- Count the number of head
- Divide by 100 and report the number

Monte Carlo Methods in Mathematical Terms

Goal: Compute EY

<u>Method:</u> Generate n iid copies $Y^{(1)}, \dots, Y^{(n)}$ of Y and set

$$\overline{Y}(n) = \frac{1}{n} \sum_{i=1}^{n} Y^{(i)}.$$

By Central Limit Theorem (roughly speaking)

$$\overline{Y}(n) \stackrel{\mathcal{D}}{\approx} \mathbf{E}Y + \frac{\sigma_Y}{\sqrt{n}}N(0,1).$$

Given

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t),$$

compute $\mathbf{E}Y \ (\triangleq \mathbf{E}X(1))$.

Instead, work with Discrete Approximation

Original Equation:

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t)$$

Discrete Approximation (Euler scheme):

$$X_m\big(\tfrac{k+1}{m}\big) - X_m\big(\tfrac{k}{m}\big) \ = \ \mu\big(X_m\big(\tfrac{k}{m}\big)\big)\tfrac{1}{m} \ + \ \sigma\big(X_m\big(\tfrac{k}{m}\big)\big)\big(B\big(\tfrac{k+1}{m}\big) - B(\tfrac{k}{m}\big)\big)$$

Instead, Work with Discrete Approximation (4 steps)

Instead, Work with Discrete Approximation (8 steps)

Instead, Work with Discrete Approximation (16 steps)

Instead, Work with Discrete Approximation (32 steps)

Instead, Work with Discrete Approximation (64 steps)

Instead, Work with Discrete Approximation (128 steps)

Consequence of Approximation

Now, error has an extra term due to approximation error / bias

Error
$$\stackrel{\mathcal{D}}{\approx} \frac{\sigma_Y}{\sqrt{n}} N(0,1) + \mathcal{O}\left(\frac{1}{m}\right),$$

Total computation $c = \mathcal{O}(mn)$

n: # samplesm: # time-steps

1000 times more computation for 1 more significant digit

Note that if there were no bias, computation $c = \mathcal{O}(n)$

100 times more computation for 1 more significant digit

Moreover, error from bias is difficult to estimate

Consequence of Approximation

Now, error has an extra term due to approximation error / bias

Error
$$\stackrel{\mathcal{D}}{\approx} \frac{\sigma_Y}{\sqrt{n}} N(0,1) + \mathcal{O}\left(\frac{1}{m}\right),$$

Total computation $c = \mathcal{O}(mn)$

n: # samplesm: # time-steps

1000 times more computation for 1 more significant digit

Note that if there were no bias, computation $c = \mathcal{O}(n)$

100 times more computation for 1 more significant digit

Moreover, error from bias is difficult to estimate

Setup

<u>Goal:</u> Compute **E***Y*, where *Y* is difficult / impossible to generate exactly

Suppose that we have a sequence of approximations $(Y_m : m \ge 0)$:

- Y_m can be generated exactly
- $Y_m \stackrel{L^2}{\to} Y$ as $m \to \infty$

Setup

Goal: Compute $\mathbf{E}Y$, where Y is difficult / impossible to generate exactly

Suppose that we have a sequence of approximations $(Y_m : m \ge 0)$:

- Y_m can be generated exactly
- $Y_m \stackrel{L^2}{\to} Y$ as $m \to \infty$

Plan: Construct an easy-to-generate random variable Z such that $\mathbf{E}Z = \mathbf{E}Y$

Think of Y as a sum of correction terms:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^{\infty} \Delta_i.$$

Think of Y as a sum of correction terms:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

Not useful for computation yet because of infinite sum

Think of Y as a sum of correction terms:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

- Not useful for computation yet because of infinite sum
- What if truncate at random N; compensate the bias with weights?

$$\sum_{i=0}^{N} w_i \Delta_i, \qquad (N < \infty)$$

Think of Y as a sum of correction terms:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

- Not useful for computation yet because of infinite sum
- What if truncate at random N; compensate the bias with weights?

$$\sum_{i=0}^{N} w_i \Delta_i, \qquad (N < \infty)$$

What is the right choice of w_i's?

Think of Y as a sum of correction terms:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

- Not useful for computation yet because of infinite sum
- What if truncate at random N; compensate the bias with weights?

$$\sum_{i=0}^{N} w_i \Delta_i, \qquad (N < \infty)$$

What is the right choice of w_i's?

$$w_i = \frac{1}{\mathbf{P}(N \ge i)}$$

Perfect Estimation Possible with Imperfect Samplers!

We can prove that

$$\mathbf{E}\sum_{i=0}^{N}w_{i}\Delta_{i}=\mathbf{E}Y$$

i.e.,
$$Z \triangleq \sum_{i=0}^{N} w_i \Delta_i \left(= \sum_{i=0}^{N} \frac{Y_i - Y_{i-1}}{\mathbf{P}(N \geq i)} \right)$$
 is an unbiased estimator of **E**Y.

Implications

Efficient and perfectly unbiased estimators for

Solutions of stochastic differential equations

Rhee & Glynn (2012, 2015a)

Stationary expectations of Markov chains

Glynn & Rhee (2014)

Sensitivity of intractible performance measures of Markov chains

Rhee & Glynn (2015b, 2015c)

Many more

Concluding Remarks

· Working with biased samples is often difficult

 A random truncation idea that can turn biased samples into perfect (i.e., unbiased) estimators

A comprehensive theory is developed

Extremely general—countless potential applications

Supplements

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^{N} w_i \Delta_i$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^{N} w_i \Delta_i = \mathbf{E} \sum_{i=0}^{N} \frac{\Delta_i}{\mathbf{P}(N \ge i)}$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E}\sum_{i=0}^{N}w_{i}\Delta_{i} = \mathbf{E}\sum_{i=0}^{N}\frac{\Delta_{i}}{\mathbf{P}(N\geq i)} = \mathbf{E}\sum_{i=0}^{\infty}\frac{\Delta_{i}\mathbb{I}(N\geq i)}{\mathbf{P}(N\geq i)}$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} (Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1})) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E}\sum_{i=0}^{N}w_{i}\Delta_{i} = \mathbf{E}\sum_{i=0}^{N}\frac{\Delta_{i}}{\mathbf{P}(N\geq i)} = \mathbf{E}\sum_{i=0}^{\infty}\frac{\Delta_{i}\mathbb{I}(N\geq i)}{\mathbf{P}(N\geq i)} = \sum_{i=0}^{\infty}\frac{\mathbf{E}\Delta_{i}\mathbb{I}(N\geq i)}{\mathbf{P}(N\geq i)}$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^N w_i \Delta_i = \mathbf{E} \sum_{i=0}^N \frac{\Delta_i}{\mathbf{P}(N \ge i)} = \mathbf{E} \sum_{i=0}^\infty \frac{\Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)}$$

$$= \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbf{P}(N \ge i)}{\mathbf{P}(N \ge i)}$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m \left(Y_{i-1} - Y_{i-1} \right) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^N w_i \Delta_i = \mathbf{E} \sum_{i=0}^N \frac{\Delta_i}{\mathbf{P}(N \ge i)} = \mathbf{E} \sum_{i=0}^\infty \frac{\Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)}$$

$$= \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbf{P}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^\infty \mathbf{E} \Delta_i$$

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} (Y_0 + \sum_{i=1}^m (Y_{i-1} - Y_{i-1})) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^N w_i \Delta_i = \mathbf{E} \sum_{i=0}^N \frac{\Delta_i}{\mathbf{P}(N \ge i)} = \mathbf{E} \sum_{i=0}^\infty \frac{\Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)}$$

$$= \sum_{i=0}^\infty \frac{\mathbf{E} \Delta_i \mathbf{P}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^\infty \mathbf{E} \Delta_i$$

$$= \mathbf{E} Y \qquad \text{if, for example,} \quad \sum_{i=0}^\infty \mathbf{E} |\Delta_i| < \infty$$

Recall:

$$Y = \lim_{m \to \infty} Y_m = \lim_{m \to \infty} \left(Y_0 + \sum_{i=1}^m (Y_i - Y_{i-1}) \right) = \sum_{i=0}^\infty \Delta_i.$$

$$\mathbf{E} \sum_{i=0}^{N} w_i \Delta_i = \mathbf{E} \sum_{i=0}^{N} \frac{\Delta_i}{\mathbf{P}(N \ge i)} = \mathbf{E} \sum_{i=0}^{\infty} \frac{\Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^{\infty} \frac{\mathbf{E} \Delta_i \mathbb{I}(N \ge i)}{\mathbf{P}(N \ge i)}$$
$$= \sum_{i=0}^{\infty} \frac{\mathbf{E} \Delta_i \mathbf{P}(N \ge i)}{\mathbf{P}(N \ge i)} = \sum_{i=0}^{\infty} \mathbf{E} \Delta_i$$

$$=\mathbf{E}Y$$
 if, for example, $\sum_{i=0}^{\infty}\mathbf{E}|\Delta_i|<\infty$

i.e., $Z \triangleq \sum_{i=0}^{N} \Delta_i / \mathbf{P}(N \ge i)$ is an unbiased estimator of EY.

(Rhee & Glynn, 2012)