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Monte Carlo Methods in Lay Terms

Repetitive random experiments
e.g. Coin flip: want to estimate P(Head)

e Flip the coin 100 times
o Count the number of head

e Divide by 100 and report the number



Monte Carlo Methods in Mathematical Terms

Goal: Compute EY

Method:  Generate n iid copies YV, ... | Y of ¥ and set

— N
Y@):ZEZY@.
i=1

By Central Limit Theorem (roughly speaking)

Y(n) REY + %N(o, ).



Example: Stochastic Differential Equations

Given

dX (1) = p(X(2)) dt + o (X (1)) dB(1),

compute EY (£ EX(1)).
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0.1 X(t) dt + 0.2 X(t) dB(t)
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Problem: we don’t know how to generate sample paths exactly



Instead, work with Discrete Approximation

Original Equation:

dX (1) = p(X (1)) dt + o(X(¢)) dB(t)

Discrete Approximation (Euler scheme):

X (550) =X () = (X () + o (Xn(5)) (B(SH) = BG))



Instead, Work with Discrete Approximation (4 steps)
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Instead, Work with Discrete Approximation (8 steps)
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Instead, Work with Discrete Approximation (16 steps)
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Instead, Work with Discrete Approximation (128 steps)




Consequence of Approximation

Now, error has an extra term due to approximation error/ bias

1
Error R %N(O, 1)+ 0 (m)’
n: # samples
Total computation ¢ = O(mn) m: # time-steps

e 1000 times more computation for 1 more significant digit

Note that if there were no bias, computation ¢ = O(n)

¢ 100 times more computation for 1 more significant digit

Moreover, error from bias is difficult to estimate
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Goal: Compute EY, where Y is difficult / impossible to generate
exactly

Suppose that we have a sequence of approximations (Y,, : m > 0):

e Y, can be generated exactly
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e Y,—Y as m—x



Goal: Compute EY, where Y is difficult / impossible to generate
exactly

Suppose that we have a sequence of approximations (Y,, : m > 0):

e Y, can be generated exactly

L2
e Y,—Y as m—x

Plan: Construct an easy-to-generate random variable Z such that
EZ=EY
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Perfect Estimation Possible with Imperfect Samplers!

We can prove that



Implications

Efficient and perfectly unbiased estimators for

e Solutions of stochastic differential equations
Rhee & Glynn (2012, 2015a)

o Stationary expectations of Markov chains
Glynn & Rhee (2014)

e Sensitivity of intractible performance measures of Markov chains

Rhee & Glynn (2015b, 2015c)

e Many more



Concluding Remarks

Working with biased samples is often difficult

A random truncation idea that can turn biased samples into
perfect (i.e., unbiased) estimators

A comprehensive theory is developed

Extremely general—countless potential applications



Supplements
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Proof of Unbiasedness

Recall:

Y= lim ¥, = lim Y0+ZY Y, ZA
Ao =1 A,

AIN >i) = EAJIN > )
Ezwl t_EZ N>l _EZ N>l _Z;P(NZI)
. EA;P
:Z;P ZEA

1

I\/Z

=EY if, for example, > ° E|Aj] < o0

i.e,Z2 YN A;/P(N >i)is an unbiased estimator of EY.
(Rhee & Glynn, 2012)
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