

Epistemic-probabilistic models of Information Retrieval

Corrado Boscarino

Information Access (IA)

Outline

Context & motivation:

Probabilistic (classic) IR vs. Cognitive (more general) IA

Outline

Context & motivation:

Probabilistic (classic) IR vs. Cognitive (more general) IA

Reconciling efforts:

Possible joint retrieval model: Epistemic Relevance Model

Outline

Context & motivation:

Probabilistic (classic) IR vs. Cognitive (more general) IA

Reconciling efforts:

Possible joint retrieval model: Epistemic Relevance Model

Application example:

ERM instantiation with TREC data

Use 'Relevance' as a conceptual lens

A Standard relevance model:

Main Assumption: observed queries and documents are random samples from a model R

A Standard relevance model:

Main Assumption: observed queries and documents are random samples from a model R

<u>Goal</u>: given observed events (queries, documents), deciding whether they're drawn from different distributions (**null** hyp.) or from the same one (**relevant** hyp.)

A standard relevance model:

Main Assumption: observed queries and documents are random samples from a model R

<u>Goal</u>: given observed events (queries, documents), deciding whether they're drawn from different distributions (**null** hyp.) or from the same one (**relevant** hyp.)

<u>Method</u>: resolving uncertainty about a distribution parameter set ϑ

Step 1: conditioning over a 'known' sample **r** from model R.

$$\mathsf{P}(\vartheta|\mathbf{r}) = \mathsf{P}(\mathsf{r}_1...\mathsf{r}_m|\vartheta)\mathsf{P}(\vartheta) / \mathsf{P}(\mathsf{r}_1...\mathsf{r}_m)$$

Step 2: Integration over possible parameters

$$\mathsf{RelMod}(\bullet) = \int_{\Theta} \mathsf{P}_{\vartheta}(\bullet) \mathsf{P}(\vartheta | \mathbf{r}) \mathrm{d}\vartheta$$

Update of a posterior $P(\vartheta|\mathbf{r})$ because of the observation that \mathbf{r}

Alternative interpretation

'Logic-Epistemic' interpretation of a relevance model: 'knowing' means 'knowing-is-relevant'

Step 1:

From a system p.o.v. RelMod(•) is correct, the system observes interaction **r** and wants to update RelMod(•) accordingly:

Alternative interpretation

'Logic-Epistemic' interpretation of a relevance model: 'knowing' means 'knowing-is-relevant'

Step 1:

From a system p.o.v. RelMod(•) is correct, the system observes interaction **r** and wants to update RelMod(•) accordingly:

Step 2: The total probability over the parameter space is defined as one:

Epistemic Relevance Model:

Step 1:

From a system p.o.v. $RelMod(\bullet)$ is correct, the system observes interaction **r** and wants to update $RelMod(\bullet)$ accordingly:

<u>New</u>: system has *interaction model* (beyond the $r / \neg r$ we can include **any** rule, derived from user studies, past interactions with the system, sentiment analysis, profiling.....)

Epistemic Relevance Model:

Step 1:

From a system p.o.v. $RelMod(\bullet)$ is correct, the system observes interaction **r** and wants to update $RelMod(\bullet)$ accordingly:

<u>New</u>: system has *interaction model* (beyond the $r / \neg r$ we can include **any** rule, derived from user studies, past interactions with the system, sentiment analysis, profiling.....)

Step 2:

The total probability over the parameter space is defined as one:

system re-normalises probability mass over rel'-states

<u>New</u>: ERM *generalises* relevance models beyond one single strategy for dealing with relevance observations

Application example

Tested on 3-years TREC (Text REtrieval Conference) session track data

Application example

Tested on 3-years TREC (Text REtrieval Conference) session track data

Application example

Tested on 3-years TREC (Text REtrieval Conference) session track data

We learned that:

- 1) New model significantly improves ranking in TREC
- 2) Performance strongly depends on cognitive model quality

Conclusion

Take-home message:

In the alternative interpretation:

- 1) Standard Relevance Model = State elimination + re-normalisation
- 2) Epistemic Relevance Model = Interactions between user and system *change* the model

Conclusion

Take-home message:

In the alternative interpretation:

1) Standard Relevance Model = State elimination + re-normalisation

2) Epistemic Relevance Model = Interactions between user and system *change* the model

Useful?

Yes, because findings in cognitive IR can directly be used in the retrieval model and performance improves

Conclusion

Take-home message:

In the alternative interpretation:

1) Standard Relevance Model = State elimination + re-normalisation

2) Epistemic Relevance Model = Interactions between user and system *change* the model

Useful?

Yes, because findings in cognitive IR can directly be used in the retrieval model and performance improves

Nice?

Yes:

I) user interactions elegantly fit the model,

II) many possible collaborations: IR, IA, cognitive and social sciences, logic and epistemology.....