A Framework for

°H

Program Analysis

Mark Hills

Postdoc in Software Analysis and Transformation (SWAT)

CWI Scientific Meeting
February 8, 2013

S\
Gde7Y/ http: . -mpl.
4 p://www.rascal-mpl.org

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

 Motivation

* (Goals

 Current Progress

* Related Work

PHP

TRAINING WHEELS WITHOUT THE BIKE

~HP: Not Always Loved and Respected -

» Created in 1994 as a set of tools to maintain personal home pages

- Major language evolution since: now an OO language with a
number of useful libraries, focused on building web pages

« Growing pains: some “ease of use” features recognized as bad and
deprecated, others questionable but still around

- Attracts articles with names like “PHP: a fractal of bad design” and
“PHP Sucks, But It Doesn’t Matter”

http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://www.codinghorror.com/blog/2008/05/php-sucks-but-it-doesnt-matter.html
http://www.codinghorror.com/blog/2008/05/php-sucks-but-it-doesnt-matter.html

So Why Focus on PHP?

 Popular with programmers: #6 on TIOBE Programming Community
Index, behind C, Java, Objective-C, C++, and C#, and 6th most
popular language on GitHub

« Used by 78.8% of all websites whose server-side language can be
determined, used in sites such as Facebook, Hyves, Wikipedia

» Big projects (MediaWiki 1.19.1 > 846k lines of PHP), wide range of
programming skKills: big opportunities for program analysis to make
a positive impact

Rascal: A Meta-Programming One-Stop-Shop 37

- Context: wide variety of programming languages (including
dialects) and meta-programming tasks

- Typical solution: many different tools, lots of glue code
* Instead, we want this all in one language, i.e., the "one-stop-shop”

- Rascal: domain specific language for program analysis, program
transformation, DSL creation

PHP Program Analysis Goals

 Build a Rascal framework for creating PHP program analysis tools

» Build a number of standard program analysis “passes”: type
inference, alias analysis, etc

» Use this to experiment with more advanced PHP analysis tools and
algorithms, e.g., to support code refactoring, security analysis,
detection of problems caused by language changes

* Integrate all this with standard IDE tools
(especially Eclipse)

What have we done so far?

» Built a number of standard tools for manipulating PHP programs
- Built basic analysis infrastructure (e.g., control flow graphs)
- Built a PHP-specific analysis for resolving dynamic file includes

- Studied actual PHP code to see what people are really doing with
the language

—mpirical Analysis of PHP Programs

- What features of PHP do people really use?

- How often are dynamic features, which are hard for static analysis
to handle, used in real programs?

- When these features do appear, are they really dynamic? Or are
they used in static ways?

=xperimental Setup: The Corpus

* 19 open-source PHP systems
« 3.37 million lines of PHP code
« Well-known systems: WordPress, Joomla, MediaWiki, MediaWiki

- Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

10

Prototyping Empirical Analyses with Rascal

- Used Rascal for all analysis steps, all computation, and generation
of results in LaTeX

- Pattern matching gives feature usage counts
- More complex patterns give uses of dynamic features
- Interaction allows inspection and refinement

 String templates allow generation of LaTeX for tables and figures

11

Frequency (log)

—xample: Feature Distribution

104 e

107 |

10°

—a— allocations - 8- assignments b binary ops
--€-- casts --0-- control flow —d— definitions
- 4 - invocations---1--- lookups --¥-- predicates
: = ;
C] C A L P
] . —
- 1 e
R
| P o \
1 $ 1 b 1U) 1 1 p 1 1 1 >
10 20 30 40 50 60 70 80 90 100

Feature ratio per file (%)

12

—xample: Occurrences of Dynamic File Includes

System Includes Files Gini
Total Dynamic Resolved
CakePHP 124 120 01 640(19) 0.28
Codelgniter 69 69 28 147(20) 0.4
DoctrineORM 56 54 36 501(14) 0.19
Drupal 172 171 130 268(16) 0.42
Gallery 44 39 25 505(10) 0.26
Joomla 354 352 200 1,481(122) 0.17
Kohana 52 48 4 432(18) 0.55
MediaWiki 554 493 425 1,480(38) 0.34
Moodle 7,744 4,291 3,350 5,367(504) 0.39
osCommerce 683 539 497 529(22) 0.28
PEAR 211 11 0 74(9) 0.14
phpBB 404 404 313 269(51) 0.34
phpMyAdmin 819 52 15 341(27) 0.23
SilverStripe 373 56 27 514(10) 0.34
Smarty 38 36 25 126(7) 0.29
SquirrelMail 426 422 406 276(13) 0.14
Symfony 96 95 41 2,137(40) 0.22
WordPress 589 360 332 387(17) 0.32
ZendFramework 12,829 350 285 4,342(42) 0.29

13

Summary of Findings

 Most files are smaller than 1300 lines of code

« Of 109 total features, 7 are never used; there is no detectable
“core”

« Supporting 74 features in an analysis would cover 80% of the files
- Many dynamic includes are static in practice
- Many variable variables use a statically detectable set of names

 Eval truly is dynamic

14

Why do all this?

 Prototypes can be built to cover a subset of the language and still
cover a significant number of real program files

- Knowledge of how often dynamic features appear provides firmer
ground in building realistic analysis algorithms

 Patterns of dynamic feature usage can be exploited in analysis
tools to improve precision, mitigate against dynamic effects

15

Related Work

 Richards et al.: dynamic analysis of JavaScript
- Meawad et al.: transformation of JavaScript to remove eval

 Furr et al.: dynamic analysis of Ruby to replace dynamic features
with easier to analyze static features

- Collberg et al.: static study of Java bytecode for counts and
distributions of various language metrics

16

Thank you!
Any Questions?

- Rascal: http://www.rascal-mpl.org

- SWAT: http://www.cwi.nl/senT

- Me: http://www.cwi.nl/~hills

17

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

