
A Framework for PHP Program Analysis

Mark Hills
Postdoc in Software Analysis and Transformation (SWAT)

CWI Scientific Meeting
February 8, 2013

http://www.rascal-mpl.org

http://www.rascal-mpl.org
http://www.rascal-mpl.org

Overview

• Motivation

• Goals

• Current Progress

• Related Work

2

3

PHP: Not Always Loved and Respected

• Created in 1994 as a set of tools to maintain personal home pages

• Major language evolution since: now an OO language with a
number of useful libraries, focused on building web pages

• Growing pains: some “ease of use” features recognized as bad and
deprecated, others questionable but still around

• Attracts articles with names like “PHP: a fractal of bad design” and
“PHP Sucks, But It Doesn’t Matter”

4

http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://www.codinghorror.com/blog/2008/05/php-sucks-but-it-doesnt-matter.html
http://www.codinghorror.com/blog/2008/05/php-sucks-but-it-doesnt-matter.html

So Why Focus on PHP?

• Popular with programmers: #6 on TIOBE Programming Community
Index, behind C, Java, Objective-C, C++, and C#, and 6th most
popular language on GitHub

• Used by 78.8% of all websites whose server-side language can be
determined, used in sites such as Facebook, Hyves, Wikipedia

• Big projects (MediaWiki 1.19.1 > 846k lines of PHP), wide range of
programming skills: big opportunities for program analysis to make
a positive impact

5

Rascal: A Meta-Programming One-Stop-Shop
• Context: wide variety of programming languages (including

dialects) and meta-programming tasks

• Typical solution: many different tools, lots of glue code

• Instead, we want this all in one language, i.e., the “one-stop-shop”

• Rascal: domain specific language for program analysis, program
transformation, DSL creation

PHP Program Analysis Goals

• Build a Rascal framework for creating PHP program analysis tools

• Build a number of standard program analysis “passes”: type
inference, alias analysis, etc

• Use this to experiment with more advanced PHP analysis tools and
algorithms, e.g., to support code refactoring, security analysis,
detection of problems caused by language changes

• Integrate all this with standard IDE tools
(especially Eclipse)

7

What have we done so far?

• Built a number of standard tools for manipulating PHP programs

• Built basic analysis infrastructure (e.g., control flow graphs)

• Built a PHP-specific analysis for resolving dynamic file includes

• Studied actual PHP code to see what people are really doing with
the language

8

Empirical Analysis of PHP Programs

• What features of PHP do people really use?

• How often are dynamic features, which are hard for static analysis
to handle, used in real programs?

• When these features do appear, are they really dynamic? Or are
they used in static ways?

9

Experimental Setup: The Corpus

• 19 open-source PHP systems

• 3.37 million lines of PHP code

• Well-known systems: WordPress, Joomla, MediaWiki, MediaWiki

• Multiple domains: app frameworks, CMS, blogging, wikis,
eCommerce, webmail, and others

10

Prototyping Empirical Analyses with Rascal

• Used Rascal for all analysis steps, all computation, and generation
of results in LaTeX

• Pattern matching gives feature usage counts

• More complex patterns give uses of dynamic features

• Interaction allows inspection and refinement

• String templates allow generation of LaTeX for tables and figures

11

Example: Feature Distribution

12

0 10 20 30 40 50 60 70 80 90 100
100

101

102

103

104

a
a

a a a

a

a a
a

a

a
a

a

a

a a a a

a

s

s s

s

s

b

b

b

b

b

b

b b

b

c

c

c

o

o

o

o

o

o

o

o

d
d

d
d d

d

d
d

d

d

d
d

d
d

d d
d

d

d

d

i i

i

i

i

i

i
i

i
i

i

l

l
l l

l
l l

l

l

l

l l

l

r

p p
p p p

p
p p

p p

p
p

p

p

p

u

u

u

Feature ratio per file (%)

F
re
q
u
en

cy
(l
og

)

a allocations s assignments b binary ops

c casts o control flow d definitions

i invocations l lookups r predicates

p print u unary ops

Figure 2: What features should one expect to find in a given PHP file? This histogram shows, for each
feature group, how many times it covers a certain percentage of the total number of features per file. Lines
between dots are guidelines for the eye only.

allocations array, clone, new, nextArrayElem, scalar
assignments B i t A n d, B i t O r, B i t X o r, Concat, D i v, L S h i f t,

Minus, M od, M u l, Plus, R S h i f t, assign, listAssign,
refAssign, unset

binary ops BitAnd, BitOr, B i t X o r, BoolAnd, BoolOr, Con-
cat, Div, Equal, Geq, Gt, Identical, L S h i f t, Leq,
LogAnd, LogOr, L og X o r, Lt, Minus, Mod, Mul,
NotEqual, NotId, Plus, R S h i f t

casts toArray, toBool, t o F l oa t, toInt, toObject,
toString, toUnset

control flow break, continue, d ec l a re, do, exit, expStmt, for,
foreach, goto, haltCompiler, if, label, return,
suppress, switch, ternary, throw, tryCatch, while

definitions classConstDef, classDef, c l os u re, const, function-
Def, global, include, interfaceDef, methodDef,
namespace, propertyDef, static, traitDef, use

invocations call, e v a l, methodCall, sh e l l E x ec, staticCall
lookups fetchClassConst, fetchConst, fetchStaticProperty,

propertyFetch, traitUse, var
predicates empty, instanceOf, isSet
print echo, inlineHTML, print
unary ops B i t N o t, BoolNot, PostDec, PostInc, P re D ec,

PreInc, UnaryMinus, U n a r y P l u s

Features in bold are not used in the corpus. Features in i t a l i cs are
not used in 90% of the corpus files. Features that are underlined are
not used in 80% of the corpus files.

Table 2: Logical Groups of PHP Features.

It is unnecessary to characterize the type of distribution
our analysis yields (which would be challenging to validate).
Nevertheless, as can be estimated from the cumulative dis-
tribution graph, the area under 1303 LOC covers 98% of the
corpus. Although there are 397 files with larger sizes, they
do not contribute significantly to the size of the corpus.

5.2 PHP Feature Distribution
We have grouped the PHP language features into 11 cate-
gories (Table 2). Syntax analysis reveals that 102 di↵erent
PHP language features are used in the corpus, out of 109
total features (unused features are shown in Table 2 in bold).

If we were to plot the feature distributions over files in our

corpus, all plots would neatly follow the shape of the above
file size distribution. Instead of doing this, we normalize for
the file size by computing for every feature, for every file, the
ratio between this feature and the total number of feature
usages in the file. Figure 2 plots a histogram of these ratios
for each of the aforementioned groups of features. You can
read from this graph what features to expect when you open
an arbitrary file in the corpus.

The graph shows how the bulk of our corpus consists of
files that have high variety in feature usage. Casts, unary
operators and builtin predicates are almost never used, and
never in large quantities in the same file. When we move
to the right —as variety diminishes— we see that lookups
and allocations rise in exchange for invocations, control flow,
definitions, prints, and binary operations. Notably, the dis-
tributions for lookups and allocations are di↵erent: they
have strong upward curves and would look bell shaped when
printed on a linear axis. For these feature groups we can
predict what the most likely percentage is, which is where
they reach the maximum coverage. For lookups this is 30%
(±10%), for allocations 15% (±10%).

The distribution for definitions (functions, classes, methods)
is interesting. It drops o↵ rapidly (exponentially) from more
than half of the files that contain practically no definitions,
to 35 files that consist of around 45% definitions. Then
it spikes again at 50% to 551. A quick inspection shows
that these 551 files make heavy use of PHP’s object-oriented
definition features, defining interfaces, classes, and methods,
while the other files contain more “procedural” code (i.e.,
regular statements and expressions from the top-level of the
script or from method and function bodies). There are also
hundreds of files which consist solely of definitions (100%).
These are abstract classes and interfaces.

All the way on the right, the most uniform files are repre-
sented. For example, there are 100 files where 90% of the

Example: Occurrences of Dynamic File Includes

13

1 $deps = "{$wgStyleDirectory}/{$skinName}.deps.php";
2 if (file_exists($deps)) {
3 include_once($deps);
4 }
5 require_once("{$wgStyleDirectory}/{$skinName}.php");

Figure 4: Dynamic Includes.

with these feature sets, Table 3 then shows how much of
each of the corpus systems would be covered. For instance,
a core PHP defined using the 80% feature set would actually
cover 95.3% of the files in CakePHP. One threat to validity
with these figures is that include expressions could make the
distribution of features in a program much di↵erent than the
distributions we see in individual files. However, as discussed
in Section 6, we have (except in isolated cases) not seen this
happen with the dynamic features we looked at, even in cases
where many of the dynamic includes can be resolved.

6. DYNAMIC PHP LANGUAGE FEATURES
The PHP language includes a number of dynamic features
that can be challenging to model in static analysis tools.
Below, we look at six of these features: dynamic file includes;
variable constructs, which allow variables to be used in place
of identifiers to name entities such as variables (variable vari-
ables) and functions (variable functions); overloading, which
uses so-called magic methods to dynamically handle accesses
of undefined or non-visible methods and properties; the
eval expression; variadic functions; and call_user_func,
a function used to call other functions, taking the function
name and arguments as parameters. For each feature, we fo-
cus on answering the final three questions in Section 1. First,
we look at where, and how often, these features are used in
PHP programs. Next we look at how uses of these features
are distributed: are they clustered together, or spread evenly
through the files in which they appear? Finally, with the
first two features and with eval we look at how dynamic
the features are in practice, looking for usage patterns and,
with dynamic includes, briefly discussing the results of an
analysis that resolves many apparently dynamic cases.

6.1 Dynamic Includes
In PHP, a script includes another file using an include ex-
pression (including the variants include_once, require,
and require_once). The name of the file to include can be
provided as a string literal, but can also be dynamic, given
using an arbitrary expression computed at runtime. Because
of this, it may not be possible for static analysis tools to
know the PHP source code for the program that will actually
be executed. Two examples, from includes/Skin.php in
MediaWiki 1.19.1, are shown in Figure 4: $deps, a string
based on a combination of a global variable, a local variable,
and a string literal, names the file included on line 3; a sec-
ond file, identified by the same path as the first except for a
di↵erent string literal, is included on line 5.

Table 4 provides a high-level overview of the incidence of
dynamic includes in the corpus. The total number of include
expressions in the system is shown in column Total, with any-
where from just 38 includes in Smarty to 12,829 in the Zend
Framework. The next column, Dynamic, then restricts this
number to just those includes with dynamic paths, defined
here as any path not given solely by a string literal.

System Includes Files Gini

Total Dynamic Resolved

CakePHP 124 120 91 640(19) 0.28

CodeIgniter 69 69 28 147(20) 0.44

DoctrineORM 56 54 36 501(14) 0.19

Drupal 172 171 130 268(16) 0.42

Gallery 44 39 25 505(10) 0.26

Joomla 354 352 200 1,481(122) 0.17

Kohana 52 48 4 432(18) 0.55

MediaWiki 554 493 425 1,480(38) 0.34

Moodle 7,744 4,291 3,350 5,367(504) 0.39

osCommerce 683 539 497 529(22) 0.28

PEAR 211 11 0 74(9) 0.14

phpBB 404 404 313 269(51) 0.34

phpMyAdmin 819 52 15 341(27) 0.23

SilverStripe 373 56 27 514(10) 0.34

Smarty 38 36 25 126(7) 0.29

SquirrelMail 426 422 406 276(13) 0.14

Symfony 96 95 41 2,137(40) 0.22

WordPress 589 360 332 387(17) 0.32

ZendFramework 12,829 350 285 4,342(42) 0.29

Table 4: Usage of Dynamic Includes.

As part of our ongoing work on PHP analysis, we are in-
vestigating techniques to resolve dynamic includes statically.
We do this using a combination of techniques, including con-
stant propagation, algebraic simplification (mainly for string
concatenation), pattern matching over paths, and function
simulation. Column Resolved shows the result of applying
our current include resolution analysis to the dynamic in-
cludes in the corpus. While in some cases this does very
little (0 resolved in PEAR, only 4 of 48 resolved in Kohana),
in other cases it is quite e↵ective, for instance resolving 332
of the 360 dynamic includes in WordPress, and 3350 of the
4291 dynamic includes in Moodle. Overall, more than 78%
of the dynamic includes in the corpus are actually static.

The final two columns provide information about the result-
ing systems after resolving dynamic includes. Column Files
shows the total number of files in the system (initially shown
in Table 1, repeated here for convenience) along with the
number of files that still contain unresolved dynamic includes,
given in parentheses. Column Gini shows how occurences of
the dynamic includes are distributed across the files which
contain at least one occurrence. This is shown in terms of
the Gini coe�cient (from here on, just “Gini”). The Gini,
ranging from 0.0 to 1.0, provides a measure for inequality—
0.0 means that all files have the same number of occurrences,
while 1.0 means that one file holds all the occurrences.

When we measure the Gini, here and with the other dynamic
features, we only include those files with at least one occur-
rence of the feature we are discussing. This is done to lower
noise in the computed Gini—in most cases, many of the files
have no occurrences of the feature being examined. If we
included these files in the Gini computation, this would cause
the Gini value to be very high (i.e., very unequal) in almost
all cases. Focusing on just files with occurrences, we can see
more clearly how the occurrences are distributed through
these files. It’s also worth noting that the Gini grows very

Summary of Findings

• Most files are smaller than 1300 lines of code

• Of 109 total features, 7 are never used; there is no detectable
“core”

• Supporting 74 features in an analysis would cover 80% of the files

• Many dynamic includes are static in practice

• Many variable variables use a statically detectable set of names

• Eval truly is dynamic

14

Why do all this?

• Prototypes can be built to cover a subset of the language and still
cover a significant number of real program files

• Knowledge of how often dynamic features appear provides firmer
ground in building realistic analysis algorithms

• Patterns of dynamic feature usage can be exploited in analysis
tools to improve precision, mitigate against dynamic effects

15

Related Work

• Richards et al.: dynamic analysis of JavaScript

• Meawad et al.: transformation of JavaScript to remove eval

• Furr et al.: dynamic analysis of Ruby to replace dynamic features
with easier to analyze static features

• Collberg et al.: static study of Java bytecode for counts and
distributions of various language metrics

16

• Rascal: http://www.rascal-mpl.org

• SWAT: http://www.cwi.nl/sen1

• Me: http://www.cwi.nl/~hills

17

Thank you!
Any Questions?

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.cwi.nl/sen1
http://www.cwi.nl/sen1
http://www.cwi.nl/~hills
http://www.cwi.nl/~hills

