Cell traction forces serve as an amplifier for mechanical cues

Speaker: Lisanne Rens (Life Sciences Group, Centrum Wiskunde & Informatica) Roeland Merks (CWI, Mathematical Institute Leiden)

Cells respond to mechanical cues in the extracellular matrix

Figure: Copied from *http://www.osteopata.it*

ECM supports tissue

cells adhere to ECM

ECM guide cell migration

Figure: [van der Schaft et al., 2011]

cells:

migrate to stiffer areas

spread more on stiff substrates

more stable focal adhesions on stiff substrates

elongate along stretch orientation

cells deform the ECM

Cells apply a traction force to the ECM \rightarrow local ECM deformations

Q: How do traction forces affect response to mechanical cue in the ECM?

A: try to find out by mathematical modeling

Figure: Copied from [Califano and Reinhart-King, 2010]

Cellular Potts Model

Cells are modelled as a collection of lattice sites [Glazier and Graner, 1993]

Monte Carlo Step:

- Move: extension/retraction of one lattice site
- Accept or decline move

System behavior based on balance of forces

Surface Contact Connectivity

Accept move with Boltzmann probability

Traction forces and mechanotaxis

Cell traction forces : cell nodes pull on cell nodes $F_i = \mu \sum_j d_{ij}$ [Lemmon and Romer, 2010] Substrate Linear elastic, isotropic, infinitesimal strain $Ku = f, \ \epsilon = (\epsilon_{xx}, \epsilon_{yy}, 2\epsilon_{xy}) = (\frac{\partial u_x}{\partial x}, \frac{\partial u_y}{\partial y}, \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y})$ Mechanotaxis Cells prefer to adhere to higher strained areas and in the strain orientation.

single cell no cellular traction forces

single cell cellular traction forces

Cell forces amplify and speed up single cell response to static stretch

group of cells no cellular traction forces

group of cells cellular traction forces

Cell forces induce self organization [Eastwood et al., 1998]

Conclusion

Cell traction forces can amplify response to mechanical cues and promote self-organization

References

Califano, J. P. and Reinhart-King, C. A. (2010).

Substrate Stiffness and Cell Area Predict Cellular Traction Stresses in Single Cells and Cells in Contact. *Cell Mol. Bioeng.*, 3(1):68–75.

Eastwood, M., Mudera, V., McGrouther, D., and Brown, R. (1998).

Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. *Cell Motility and the Cytoskeleton*, 40(1):13–21.

Glazier, J. and Graner, F. (1993).

Simulation of the differential adhesion driven rearrangement of biological cells. *Physical Review E*, 47(3):2128–2154.

Lemmon, C. A. and Romer, L. H. (2010).

A Predictive Model of Cell Traction Forces Based on Cell Geometry. Biophys. J., 99(9):L78–L80.

van der Schaft, D. W. J., van Spreeuwel, A. C. C., Van Assen, H. C., and Baaijens, F. P. T. (2011).

Mechanoregulation of Vascularization in Aligned Tissue-Engineered Muscle: A Role for Vascular Endothelial Growth Factor.

Tissue Eng. Pt. A, 17(21-22):2857-2865

Vernon, R. B. R. and Sage, E. H. E. (1995).

Between molecules and morphology. Extracellular matrix and creation of vascular form. *Am. J. Pathol.*, 147(4):873–883.

Hamiltonian

$$H = \sum_{(\vec{x},\vec{x}')} J(\tau(\sigma_{\vec{x}}),\tau(\sigma_{\vec{x}'}))(1-\delta(\sigma_{\vec{x}},\sigma_{\vec{x}'})) + \lambda_A \sum_{\sigma} (a(\sigma)-A)^2$$
(1)

$$P(\Delta H) = \begin{cases} 1 & \text{if } \Delta H < 0\\ e^{-\frac{\Delta H}{T}} & \text{if } \Delta H \ge 0. \end{cases}$$
(2)

Mechanotaxis

To incorporate cell response to strains in the substrate, another term is added to the Hamiltonian:

 $\Delta H_{\text{mech}} = -g(\vec{x}, \vec{x}')\lambda_{\text{mech}} \left[f(E(\epsilon_1))(\vec{v_1} \cdot \vec{v_m})^2 + f(E(\epsilon_2))(\vec{v_2} \cdot \vec{v_m})^2 \right]$

g : ± 1 extensions/retractions

λ_{dur} : durotaxis parameter

- $ec{v_1}, ec{v_2}, \epsilon_1, \epsilon_2$: principal directions and strains
 - \vec{v}_m : copy direction
 - $E(\epsilon)$: $E_0(1 + \frac{\epsilon}{\epsilon_{st}})$ modelling strain-stiffening
 - f(E) : sigmoid function "A certain level of stiffness is needed to cause a cell to spread, and there is a maximum of response"

Order parameter

Orientational order parameter

 $\vec{v}(\sigma(\vec{x}))$ direction of long axis of cell at \vec{x} .

 \vec{n} local director, the weighted local average of cell orientations, within a radius r around \vec{x} , such that $\vec{n}(\vec{x},r) = \langle \vec{v}(\sigma(\vec{y})) \rangle_{\{\vec{y} \in \mathbb{Z}: |\vec{x} - \vec{y}| < r\}}.$

 $\theta(\vec{x},r)$ angle between $\vec{v}(\sigma(\vec{x}))$ and \vec{n}

S order parameter, defined as

$$S(r) = \left\langle \frac{3\cos^2\theta(\vec{X}(\sigma), r) - 1}{2} \right\rangle_{\sigma}$$
where $\vec{X}(\sigma)$ is the center of mass of cell σ