Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

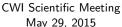
The argument

Bayesian prediction

The argument recast

Occam's data-compressor Justifying simplicity via algorithmic information theory

Tom Sterkenburg (Algorithms & Complexity)



ermatica

 university of groningen

faculty of philosophy

Ξ

Way 29, 20

Tom Sterkenburg (Algorithms & Complexity)

Occam's data-compressor

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

- Compression
- The argument
- Bayesian prediction
- The argument recast

Occam's razor: thou shalt not make things unnecessarily complicated!

《曰》《卽》《臣》《臣》

Ξ

Sar

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)
- Occam's razor
- Compression
- The argument
- Bayesian prediction
- The argument recast

► Occam's razor: thou shalt seek simplicity!

《曰》《卽》《臣》《臣》

Ξ

DQC

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

- Compression
- The argument
- Bayesian prediction
- The argument recast

► Occam's razor: thou shalt seek simplicity!

《曰》《卽》《臣》《臣》

Э

Sar

▷ Why? Can we *justify* that?

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

► Occam's razor: thou shalt seek simplicity!

イロト イヨト イヨト

Э

Sar

- ▷ Why? Can we *justify* that?
- ▷ "Simplicity"? Can we *measure* that?

Algorithmic information theory

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

simplicity \sim compressibility

《曰》《卽》《臣》《臣》

Ξ

990

Prediction by datacompression

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

- ► Assign higher probability to more compressible future data.
 - \triangleright Let *C* be a computer.
 - $\triangleright~$ Let σ be a data sequence, and ρ be the shortest C-instruction for $\sigma.$
 - $\triangleright~$ Data sequence σ is more *compressible* as instruction ρ is *shorter*.
 - \triangleright Let $\lambda(\rho)$ be the *uniform probability* of ρ : it is higher as ρ is shorter.

・ロト ・日ト ・ヨト ・ヨト

Prediction by datacompression

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

► Assign higher probability to more compressible future data.

 \triangleright Let *C* be a computer.

- $\triangleright~$ Let σ be a data sequence, and ρ be the shortest C-instruction for $\sigma.$
- $\triangleright~$ Data sequence σ is more *compressible* as instruction ρ is *shorter*.
- \triangleright Let $\lambda(\rho)$ be the *uniform probability* of ρ : it is higher as ρ is shorter.

Definition (Solomonoff, 1964)

The algorithmic probability via C of data sequence σ is given by

 $Q_C(\sigma) = [\text{imposing definition}] \approx \lambda(\rho).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \triangleright Let's refer to these probability distributions as the **predictors of type** $\mathcal{Q}.$

The argument to justify Occam's razor

Occam's data- compressor	
Tom Sterkenburg (Algorithms & Complexity)	
	1. predictors of type ${\mathcal Q}$ possess a simplicity preference
Occam's razor	2. predictors of type Q are reliable (in essentially every case)
Compression	2. predictors of type & are remaded (in essentially every case)
The argument	
Bayesian prediction	

The argument recast

イロト イヨト イヨト

Ξ

DQR

The argument recast

The argument to justify Occam's razor

イロト イヨト イヨト

Э

Da C

Occam's data- compressor	
Tom Sterkenburg (Algorithms & Complexity)	
	1. predictors of type ${\mathcal Q}$ possess a simplicity preference
Occam's razor	2. predictors of type \mathcal{Q} are reliable (in essentially every case)
Compression	
The argument	∴ predictors preferring simplicity are (essentially always) reliable
Bayesian prediction	

The argument to justify Occam's razor

Occam's data- compressor	
Tom Sterkenburg (Algorithms & Complexity)	
	1. predictors of type ${\mathcal Q}$ possess a simplicity preference
Occam's razor	2. predictors of type \mathcal{Q} are reliable (in essentially every case)
Compression	
The argument	∴ justification of Occam's razor
Bayesian prediction	
The argument recast	

《口》《國》《臣》《臣》

Ξ

200

Too good to be true?

	Tom Sterkenburg	(Algorithms & Complexity)	< □ ▷ < লি ▷ < ≞ ▷ Occam's data-compressor	· < E> E	: ୬ ୯ (
The argument recast					
Bayesian prediction					
The argument					
Compression					
Occam's razor					
Occam's data- compressor Tom Sterkenburg (Algorithms & Complexity)					

Too good to be true?

Occam's
data-
compressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

1. predictors of type ${\mathcal Q}$ possess a simplicity preference

イロト イヨト イヨト イヨト

Э

Da C

► Do they really?

Too good to be true?

Occam's data- compressor						
Tom Sterkenburg (Algorithms & Complexity)	1. predictors of type ${\mathcal Q}$ possess a simplicity preference					
Occam's razor Compression	► Do they really?					
The argument	Theorem					
Bayesian prediction	For every nonatomic computable measure μ ,					
The argument recast	$\mathcal{Q}^{\mu}=\mathcal{Q}.$					
	< □ > < 靣 > < 흔 > < 흔 > 差 · ·) Q					
	Tom Sterkenburg (Algorithms & Complexity) Occam's data-compressor					

A different pair of glasses

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

► Let's recast the argument in terms of **Bayesian prediction**.

イロト イロト イモト イモト

Ξ

DQC

A different pair of glasses

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

► Let's recast the argument in terms of **Bayesian prediction**.

• □ > • □ > • □ > • □ > • □ > •

- $\triangleright \text{ Define prior distribution } W \text{ over selected hypothesis class } \mathcal{H}.$
- ▷ The hypothesis class embodies our *inductive assumptions*.

A different pair of glasses

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

► Let's recast the argument in terms of **Bayesian prediction**.

イロト イボト イラト イラト

- $\triangleright \text{ Define prior distribution } W \text{ over selected hypothesis class } \mathcal{H}.$
- ▷ The hypothesis class embodies our *inductive assumptions*.

Definition

The Bayesian mixture distribution $P^{\mathcal{H}}_W$ via prior W on hypothesis class $\mathcal H$ is given by

$$P_W^{\mathcal{H}}(\sigma) := \sum_{P \in \mathcal{H}} W(P) P(\sigma).$$

Tom Sterkenburg (Algorithms & Complexity)

Occam's data-compressor

A very special inductive assumption

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)
- Occam's razor
- Compression
- The argument
- Bayesian prediction
- The argument recast

- ► Consider the hypothesis class \mathcal{H}^{eff} of effectively approximable or simply *effective* hypotheses (Zvonkin & Levin, 1970).
- ► The Bayesian predictors with an effective prior over this hypothesis class are the predictors *operating under the inductive assumption of effectiveness*.

 \triangleright We'll call these the **predictors of type** \mathcal{R} .

It's the same thing!

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

▶ The predictors of type Q and the predictors of type R are the same!

< D > < B > < E > < E > <</p>

Ξ

SQ CV

It's the same thing!

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast

 \blacktriangleright The predictors of type ${\cal Q}$ and the predictors of type ${\cal R}$ are the same!

Theorem (Wood, Sunehag and Hutter, 2013)

 $\mathcal{Q}=\mathcal{R}.$

- \triangleright The choice of computer is the choice of Bayesian prior over $\mathcal{H}^{\mathrm{eff}}$.
- ► The defining simplicity preference of predictors of type Q is the adherence to the inductive assumption of effectiveness.

Recasting the argument

Occam's data- compressor									
Tom Sterkenburg (Algorithms & Complexity)	ori	0	•	ors of type ${\cal Q}$ pors of type ${\cal Q}$ a					
Occam's razor		t	1 muadiatu	and the set of the set		سهام المطرية	, 		
Compression	r	ecast	•	ors of type ${\mathcal R}$ c tion of effectiv	•	r the induct	ive		
The argument			•			nder the			
Bayesian prediction			•	predictors of type ${\mathcal R}$ are reliable under the assumption of effectiveness					
The argument recast									
						${}^{+}\Xi {}^{+}{}^{+}{}^{+}\Xi {}^{+}$	111	996	
	Tom Sterkenburg	(Algorithms	& Complexity	Occam's data	-compressor				

Taken together

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)
- Occam's razor
- Compression
- The argument
- Bayesian prediction
- The argument recast

- **original** predictors that possess a simplicity preference are (essentially always) reliable
 - **recast** predictors that implement the inductive assumption of effectiveness are reliable *under the same assumption* of effectiveness

イロト イヨト イヨト

3

Taken together

- Occam's datacompressor
- Tom Sterkenburg (Algorithms & Complexity)
- Occam's razor
- Compression
- The argument
- Bayesian prediction
- The argument recast

- **recast** predictors that implement the inductive assumption of effectiveness are reliable *under the same assumption* of effectiveness
- ► This is just an instance of Bayesian *consistency*, that holds for every (countable) hypothesis class.

イロト イヨト イヨト イヨト

Э

The (bittersweet) conclusion

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast The central element of algorithmic information theory is the constraint of *effectiveness*.

Effectiveness is interesting as a highly general inductive assumption. Arguably, the predictors employing this assumption are universally optimal: they represent the best we can possibly do. As such, the theory presents a limit case to optimal prediction – an important topic both in philosophy and statistics.

But algorithmic information theory cannot do the job of justifying Occam's razor.

The (bittersweet) conclusion

Occam's datacompressor

Tom Sterkenburg (Algorithms & Complexity)

Occam's razor

Compression

The argument

Bayesian prediction

The argument recast The central element of algorithmic information theory is the constraint of *effectiveness*.

Effectiveness is interesting as a highly general inductive assumption. Arguably, the predictors employing this assumption are universally optimal: they represent the best we can possibly do. As such, the theory presents a limit case to optimal prediction – an important topic both in philosophy and statistics.

But algorithmic information theory cannot do the job of justifying Occam's razor.

www.cwi.nl/~tom