Uncertainty Quantification in Computational Fluid Dynamics

Jeroen Witteveen

Tenure-Track Scientific Staff Member
Computational Energy Systems
Scientific Computing group

CWI Scientific Meeting Thursday, April 4, 13.00 - 14.00 Room Z009 (Euler)

Fluid Dynamics

Flow of fluids in contact with objects

Air over airplane wings

Wind around turbines

Oil in reservoirs and pipes

Blood in veins

Experimental Fluid Dynamics

Testing stationary objects in moving air flow is expensive

First flight by Wright brothers

Wright wind tunnel

Smoke visualization around car Largest wind tunnel at NASA Ames

Computational Fluid Dynamics (CFD)

Simulating fluid flow by solving equations on computers

Sequoia supercomputer at Lawrence Livermore National Laboratories Jet engine exhaust simulation on 1 million computer processors

CFD process

Computer implementation of a discretized geometry

Real-world object

Geometrical description

Spatial discretization

Navier-Stokes equations

Mathematical model of the flow physics

Physical laws of classical mechanics:

- Conservation of mass
- Conservation of energy
- Conservation of momentum:

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho g_x,$$
 time inertia terms pressure viscous effects gravity

A system of nonlinear, time-dependent, partial differential equations (PDEs)

Robust discretizations for discontinuous solutions

Computer algorithms based on mathematical methods from numerical analysis:

Example of

- Finite difference
- Finite element
- Finite volume

Robustness concepts:

- Local Extremum Diminishing (LED)
- Total Variation Diminishing (TVD)
- Monotonicity Preserving (MP)
- Essentially Non-Oscillatory (ENO)
- Subcell Resolution (SR)

Example of temporal discretization

$$\frac{\partial u}{\partial t} = \frac{u_i - u_{i-1}}{\Delta t}$$

Transonic shock wave at a jet fighter causes water vapor condensation

Graphical user interface of commercial software

Specifying boundary conditions

Input parameters not exactly known

Sources of uncertainty:

- Atmospheric fluctuating wind
- Manufacturing tolerances on the geometry
- Wear and tear of surface roughness
- Insufficient measurements

Uncertain boundary and initial conditions, and model parameters:

- Fluid velocity u, air density ρ , ambient pressure ρ
- viscosity μ

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + \rho g_x,$$

Wind turbine performance degenerates faster than expected

Surface roughness wear and tear of wind turbine blades:

- Ice formation
- Sand blasting
- Insect contamination
- Bird and bat impact

Insect contamination

Description of uncertainty

Uncertainty quantification: performing multiple simulations

Conventional CFD simulations:

Uncertainty quantification in CFD:

Discretization of spatial and stochastic dimensions

Monte Carlo simulation too expensive for CFD

Monte Carlo simulation:

Pre-processing: Random sampling points

Uncertainty propagation: Many CFD simulations

Post-processing: Ensemble statistics

Reduce number of expensive CFD simulations

Stochastic Collocation with sparse grids:

Pre-processing: Choice of quadrature points

Uncertainty propagation: Small number of CFD simulations

Post-processing: Global polynomial interpolation

2 1.5 0.5 0 1 0.5 0 0.5 0 0.5 0 0.5 0 5 2

Interpolation overshoots at discontinuities

Same robustness as in spatial discretization

Simplex Stochastic Collocation:

Pre-processing: Minimal number of sampling points

Uncertainty propagation: Solution-adaptive refinement

Post-processing: Robust piecewise interpolation

Robustness concepts:

- Local Extremum Diminishing (LED)
- Total Variation Diminishing (TVD)
- Monotonicity Preserving (MP)
- Essentially Non-Oscillatory (ENO)
- Subcell Resolution (SR)

Robust adaptive approximation

Computational fluid dynamics example

Transonic flow over wing cross-section:

- Mach number 0.8
- Random flow angle
- Beta distribution on [1°,3°]

Shock wave location sensitive for uncertain flow angle

Uncertainty quantification findings:

- Mean shock wave smeared
- Local maximum in standard deviation

Combustion simulations with parameter and model uncertainties

Supersonic combustion engine for hypersonic flight:

Parameter uncertainty: Uncertainty boundary conditions

Model uncertainty: Turbulence model uncertainty

Numerical error: Spatial discretization

Hyshot II scramjet flight experiment

Uncertain flow angle and flight altitude boundary conditions

Model uncertainty dominates turbulent flow simulations

By an order of magnitude estimated using two different turbulence models

Wall pressure simulations, measurements, and uncertainty bars

Parameter uncertainty and numerical error

Parameter and model uncertainty

Wind turbine robust design optimization under uncertainty

Uncertain wind conditions given by measured histograms

Uncertain conditions:

- Wind conditions
- Manufacturing tolerances
- Insect contamination

Input probability density functions for the uncertain wind conditions

Deterministic optimization: Significant reduction in noise

Deterministic rank-one Pareto front optimization using genetic algorithm

Optimization under uncertainty: Peak probability at maximum output

Density of power coefficient for optimum and trade-off

Conclusions

Computational Fluid Dynamics:

- Numerically solving the Navier-Stokes equations
- Robust numerical methods for discontinuities

Uncertainty Quantification:

- Robust discretization methods in probability space
- Parameter uncertainty, model uncertainty, numerical error
- Robust performance by optimization under uncertainty

Questions?

Thank you