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Fluid Dynamics

Flow of fluids in contact with objects

Air over airplane wings Wind around turbines

Oil in reservoirs and pipes Blood in veins



Experimental Fluid Dynamics

Testing stationary objects in moving air flow is expensive

First flight by Wright brothers Wright wind tunnel

Smoke visualization around car Largest wind tunnel at NASA Ames



Computational Fluid Dynamics (CFD)

Simulating fluid flow by solving equations on computers

Sequoia supercomputer at Lawrence Jet engine exhaust simulation
Livermore National Laboratories on 1 million computer processors




CFD process

Computer implementation of a discretized geometry

Real-world object Geometrical description
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Navier-Stokes equations

Mathematical model of the flow physics

Physical laws of classical mechanics:
* Conservation of mass
* Conservation of energy

* Conservation of momentum:

ou 3 ou N ou N ou dp N d*u N Pu  O*u N
: ot Ox My 0z ox d ox?  Oy*  0z? F
time inertia terms pressure viscous effects gravity

A system of nonlinear, time-dependent, partial differential

equations (PDEs)



Robust discretizations for
discontinuous solutions

Computer algorithms based on mathematical methods from

numerical analysis: Example of
* Finite difference temporal discretization
ou  w; — Uj—1

* Finite element — =
ot At
Transonic shock wave at a jet fighter
causes water vapor condensation

* Finite volume

Robustness concepts:

e Local Extremum Diminishing (LED)

e Total Variation Diminishing (TVD)

 Monotonicity Preserving (MP) ﬂ [

e Essentially Non-Oscillatory (ENO)

e Subcell Resolution (SR) !



Graphical user interface
of commercial software

X FLUENT@wcr-a.local [2d, dp, dbns imp, S-A]
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Specifying boundary conditions
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Input parameters not exactly known

Sources of uncertainty:

* Atmospheric fluctuating wind
 Manufacturing tolerances on the geometry
 Wear and tear of surface roughness

* |nsufficient measurements

Uncertain boundary and initial conditions, and model parameters:

* Fluid velocity u, air density p, ambient pressure p
* viscosity u

d_u -1 U()i + L‘d—u -+ w()—u — d_p + 1 (-:_')‘2,“ + E)gu- 4 i?g'll- n
g ot dx Oy 0z) O ; dx? = OJy*  02* P9z
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Wind turbine performance
degenerates faster than expected

Surface roughness wear and tear of wind turbine blades:

Ice formation
Sand blasting
Insect contamination

Ice formation

Bird and bat impact

Insect contamination

11




Description of uncertainty

Interval analysis Fuzzy logic Probability theory

Interval Membership function Cumulative distribution

—_—

Increasingly quantitative
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Uncertainty quantification:
performing multiple simulations

Conventional CFD simulations:

* Model parameters .
g L Computer Numerical
* |nitial conditions .
o\ code solution
* Boundary conditions

Uncertainty quantification in CFD:

Pre-processing Post-processing
Computer
code ll
Input Existing black-box Output
probability CFD simulation quantity

distributions software of interest
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Discretization of spatial and
stochastic dimensions

output of
interest

—

u(Z, §)

spatial discretization stochastic discretization

— — —_—
e X 5 c =

spatial stochastic
coordinates dimensions
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Monte Carlo simulation
too expensive for CFD

Monte Carlo simulation:

* Pre-processing: Random sampling points
* Uncertainty propagation: Many CFD simulations

* Post-processing: Ensemble statistics

Random sampling
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Reduce number of
expensive CFD simulations

Stochastic Collocation with sparse grids:

* Pre-processing: Choice of quadrature points

* Uncertainty propagation: Small number of CFD simulations
* Post-processing: Global polynomial interpolation

response

6

Deterministic samplin . . L
piing Interpolation overshoots at discontinuities



Same robustness as in
spatial discretization

Simplex Stochastic Collocation:

* Pre-processing: Minimal number of sampling points
* Uncertainty propagation: Solution-adaptive refinement
* Post-processing: Robust piecewise interpolation
2
Robustness concepts: 15
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Robust adaptive approximation



Computational fluid
dynamics example

Transonic flow over wing cross-section:
 Mach number 0.8

 Random flow angle
e Beta distribution on [1°,3°]

Static fluid pressure for 2°
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Shock wave location sensitive
for uncertain flow angle

Uncertainty quantification findings:
e Mean shock wave smeared
e Local maximum in standard deviation

Mean pressure Standard deviation




Combustion simulations with
parameter and model uncertainties

Supersonic combustion engine for hypersonic flight:
 Parameter uncertainty:  Uncertainty boundary conditions

* Model uncertainty: Turbulence model uncertainty
* Numerical error: Spatial discretization

Hyshot Il scramjet flight experiment

Mixing and
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Uncertain flow angle and flight
altitude boundary conditions

mean [Pa]

mean pressure
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Parameter uncertainty and numerical error

45x1o4

Model uncertainty dominates
turbulent flow simulations

By an order of magnitude estimated using two different
turbulence models

Wall pressure simulations, measurements, and uncertainty bars
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Wind turbine robust design
optimization under uncertainty

50kW AOC 15/50 wind turbine Acqua Spruzza site in ltaly
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Uncertain wind conditions given
by measured histograms

Uncertain conditions:

* Wind conditions
 Manufacturing tolerances
* Insect contamination

Input probability density functions for the uncertain wind conditions

probability density function

Magnitude Turbulence intensity Direction
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Deterministic optimization:
Significant reduction in noise

Overall Sound Pressure Level [dB]

Deterministic rank-one Pareto front
optimization using genetic algorithm
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Optimization under uncertainty:
Peak probability at maximum output

Density of power coefficient for optimum and trade-off
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Conclusions

Computational Fluid Dynamics:
* Numerically solving the Navier-Stokes equations
 Robust numerical methods for discontinuities

Uncertainty Quantification:

* Robust discretization methods in probability space
 Parameter uncertainty, model uncertainty, numerical error
* Robust performance by optimization under uncertainty



Questions?

Thank you

http://www.jeroenwitteveen.com



