
Aiko Yamashita

CWI, Netherlands
Oslo and Akershus University College, Norway

2016-12-09

Investigating how code attributes affect the
effort of developers performing different

activities during software maintenance

STRUCTURAL PROPERTIES AFFECT SOFTWARE

➡ Long Method
➡ Large Class

Bloaters

Change preventers

➡ Divergent Change
➡ Shotgun Surgery

https://sourcemaking.com/refactoring/smells https://xkcd.com/844/

Spaghetti

monster

https://sourcemaking.com/refactoring/smells
https://sourcemaking.com/refactoring/smells
https://xkcd.com/844/
https://xkcd.com/844/

CODE SMELLS: ONE FORM OF STRUCTURAL ANOMALY

A hint about suboptimal implementation choices that can affect
negatively future maintenance and evolution.

A change leads to another change,
to another, to another..

Shotgun Surgery

Reduce the coupling between
components

Move method refactoring

EXAMPLE OF CODE SMELL AND REFACTORING

STATE OF ART ON CODE SMELLS

Empirical studies

• Code smells have deterring effects on the introduction of defects

‣ Monden (2002), Li &Shatnawi (2007), Kapser (2006), Juergens (2009), Rahman (2011)

• Larger maintenance effort

‣ Deligiannis (2004), Abbes (2011)

• Larger and more frequent changes in the code

‣ Olbrich (2009), Khomh (2009)

• The overall capacity of code smell analysis to explain or predict
maintenance problems or maintenance effort is rather modest

‣ Yamashita (2012), Sjøberg (2013)

Previous work: Multiple, controlled case study
(Yamashita 2012, Sjøberg et al., 2013)

• 4 Java Applications
• Same functionality
• Different design/code
• Size: 7KLOC to 14KLOC

Context

Task 3.
New Reporting
functionality

Task 1. Replacing external data source

✔

Task 2.
New authentication
mechanism

System!

Maintenance Tasks

DCBA

Developer

System

Study Design

Previous work: Multiple, controlled case study
(Yamashita 2012, Sjøberg et al., 2013)

System

Project context
Tasks

Source
code

Daily interviews
Audio files/notes

Subversion
database

Programming
Skill

Defects*

Development
Technology

Change
Size**

Effort**

Maintenance outcomes

Think aloud
Video files/notes

Task
progress
sheets

Eclipse
activity

logs

Trac (Issue tracker),
Acceptance test

reports

Open interviews
Audio files/notes

Variables
of interest

Data
sources

Moderator
variables

Code smells
(num. smells**
smell density**)

** System and file level
* Only at system level

Maintainability
perception*

Maintenance
problems**

Think aloud
Video files/notes

Study
diary

• 50,000 Euros• Sep-Dec, 2008
• 7 Weeks• 6 Developers• 2 Companies

Paper by
Sjøberg et al.

(2013)

• A model that includes file size and
number of changes and code smells
displayed a fit of R2 = 0.58

• Removing the smells from that model
did not decrease the fit!! (R2 = 0.58)

• Only smell that remained significant
was Refused Bequest, which registered
a decrease in effort (α < 0.01)

• File size and number of changes
remain the most significant predictors
of effort (α < 0.001)

Analysis done in previous work
(Sjøberg et al., 2013)

Dependent variable: Effort (time)
Independent variables: 12 smells
Control variables:

• File size (LOC)
• Number of revisions on a file
• System
• Developer
• Round

Analysis: Multiple Linear Regression

Explanatory model for Effort Results

• A model that includes file size and
number of changes and code smells
displayed a fit of R2 = 0.58

• Removing the smells from that model
did not decrease the fit!! (R2 = 0.58)

• Only smell that remained significant
was Refused Bequest, which registered
a decrease in effort (α < 0.01)

• File size and number of changes
remain the most significant predictors
of effort (α < 0.001)

Analysis done in previous work
(Sjøberg et al., 2013)

Dependent variable: Effort (time)
Independent variables: 12 smells
Control variables:

• File size (LOC)
• Number of revisions on a file
• System
• Developer
• Round

Analysis: Multiple Linear Regression

Explanatory model for Effort

Code smells are not better at
explaining sheer-effort at file level,
than size and number of revisions.

Results

Previous analysis considers sheer effort

Programming (code-related)
activities during Maintenance

Reading

Searching

Navigating

Editing

Others

Procedure for extracting activity effort

• Selection of artifacts in the package explorer
• Selection of Java elements in the editor window
• Selecting Java elements in the file outline
• Editing source files (Java files)
• Scrolling the source code window
• Switching between open files
• Running Eclipse “commands” (copy, paste, go to line)

System

Project context
Tasks

Source
code

Daily interviews
Audio files/notes

Subversion
database

Programming
Skill

Defects*

Development
Technology

Change
Size**

Effort**

Maintenance outcomes

Think aloud
Video files/notes

Task
progress
sheets

Eclipse
activity

logs

Trac (Issue tracker),
Acceptance test

reports

Open interviews
Audio files/notes

Variables
of interest

Data
sources

Moderator
variables

Code smells
(num. smells**
smell density**)

** System and file level
* Only at system level

Maintainability
perception*

Maintenance
problems**

Think aloud
Video files/notes

Study
diary

Activity logs

Annotation schema

Procedure for extracting activity effort

System

Project context
Tasks

Source
code

Daily interviews
Audio files/notes

Subversion
database

Programming
Skill

Defects*

Development
Technology

Change
Size**

Effort**

Maintenance outcomes

Think aloud
Video files/notes

Task
progress
sheets

Eclipse
activity

logs

Trac (Issue tracker),
Acceptance test

reports

Open interviews
Audio files/notes

Variables
of interest

Data
sources

Moderator
variables

Code smells
(num. smells**
smell density**)

** System and file level
* Only at system level

Maintainability
perception*

Maintenance
problems**

Think aloud
Video files/notes

Study
diary

System

Project context
Tasks

Source
code

Daily interviews
Audio files/notes

Subversion
database

Programming
Skill

Defects*

Development
Technology

Change
Size**

Effort**

Maintenance outcomes

Think aloud
Video files/notes

Task
progress
sheets

Eclipse
activity

logs

Trac (Issue tracker),
Acceptance test

reports

Open interviews
Audio files/notes

Variables
of interest

Data
sources

Moderator
variables

Code smells
(num. smells**
smell density**)

** System and file level
* Only at system level

Maintainability
perception*

Maintenance
problems**

Think aloud
Video files/notes

Study
diary

Activity logs

Automated
annotation

Annotated activity logs

Effort per
activity

Truncate consecutive
events with same
activity and calculate
elapsing time

Procedure for extracting activity effort

System

Project context
Tasks

Source
code

Daily interviews
Audio files/notes

Subversion
database

Programming
Skill

Defects*

Development
Technology

Change
Size**

Effort**

Maintenance outcomes

Think aloud
Video files/notes

Task
progress
sheets

Eclipse
activity

logs

Trac (Issue tracker),
Acceptance test

reports

Open interviews
Audio files/notes

Variables
of interest

Data
sources

Moderator
variables

Code smells
(num. smells**
smell density**)

** System and file level
* Only at system level

Maintainability
perception*

Maintenance
problems**

Think aloud
Video files/notes

Study
diary

Categorization

Categorization of developers’
activities and sub-activities
was adapted from previous

work (Layman 2008)

Analysis performed

Only Java files
considered

Multiple linear regression

- Forward stepwise -

Results: Distribution of activity effort

➡ Mostly performed activities:
Navigating (58.72%), Reading
(28.27%), Editing (10.18%) and
searching (2.47%)

➡ Distribution is consistent with
Ko et al. 2006 (top four)

➡ Reading as most consuming
activity in Ko et al. 2006.

‣ Definition of event/action
belonging to an activity

For our analysis, we only consider:
Editing, Navigating, Searching and Reading

Results: Editing Effort
Model 0 + file size

R2 = 0.11

Model 3 - smellsR2 = 0.59

Results: Editing Effort
Model 0 + file size

R2 = 0.11

Model 3 - smellsR2 = 0.59

Compared to code smells, file size has limited impact

Contrast with previous study by Sjøberg et al [2013]

Effect of code smells vanishes when the revisions is included

God Class, ISP Violation, and Use interface instead of

implementation can indicate larger effort

Results: Navigating Effort

Results: Navigating Effort

Revisions still impacts more than file size and code smells

Only God Class remains significant after revisions

Results: Reading Effort

Results: Reading Effort

Revisions and file size explain more the effort than code smells

Change size explains the effort more than the file size

Results: Searching Effort

Results: Searching Effort

Revisions impacts more than file size (magnitude and model fit)

Only Feature Envy smell affects the searching effort

Summary of Results

Smells explain better Editing and
Navigating effort than file size, but

not for Reading and Searching

Maintenance problems in

previous work related to

increased effort for editing,

navigating and reading

Threats to validity
‣ Learning effect (accounted with rounds)

‣ Instrumentation and log processing accuracy

‣ Choice of tools for code smells (inCode and Together)

‣ Generalization is limited to context

‣ Think-aloud + Log analysis = how smells affect the activities

‣ Taxonomies on programming problems during maintenance

‣ Explore GLM for better explanatory models

‣ More replications!

Future work

What to take home today...

‣Structural attributes represented in the form of different code smells do
indeed have an effect on the developers’ effort for certain kinds of
activities.

‣Different code smells significantly impact the effort of different activities.
For example, we found that “Feature Envy” affects searching effort while
“Data Clumps” affects editing effort.

‣The effect of code smells on editing and navigating effort is, in fact, larger
than file size, whiles the opposite is the true for reading and searching
effort

‣If the effect of code smells is contingent on the type of activity, this may
mean that is contingent on the task at hand (e.g., some tasks may require
more reading than others)

Contact: aiko.yamashita@cwi.nl

Thank you!

