Machine Learning for Space Weather

Multiscale Dynamics

www.mlspaceweather.org

CWI Scientific Meeting 14th October 2016

No telecommunications

- No telecommunications
- Terrestrial and undersea lines overloaded

...when satellites stop working

- No telecommunications
- Terrestrial and undersea lines overloaded
- No military surveillance
- No weather forecast

...when satellites stop working

- No telecommunications
- Terrestrial and undersea lines overloaded
- No military surveillance
- No weather forecast
- No GPS

No GPS

- Drilling, agriculture
- Aviation
- Railways

Z	D	EΡ	AF	R	Ū	R	ES	

TIME	DESTINATION	FLIGHT	GATE	REMARKS
12:39	LONDON	BA 903	31	CANCELLED
12:57	SYDNEY	QF5723	27	CANCELLED
13:08	TORONTO	AC5984	22	CANCELLED
13:21	TOKYO	JL 608	41	DELAYED
13:37	HONG KONG	CX5471	29	CANCELLED
13:48	MADRID	IB3941	30	DELAYED
14:19	BERLIN	LH5021	28	CANCELLED
14:35	NEW YORK	AA 997	11	CANCELLED
14:54	PARIS	AF5870	23	DELAYED
15:10	ROME	AZ5324	43	CANCELLED

GPS provides precise time stamps to:

- Communications systems
- Electrical power grids
- Stock market

...and this is only the start

Imagine if...

- Several high-voltage transformers would be damaged, causing
- widespread blackouts,

affecting:

- Transportation
- Water supply
- Communication
- Industry

...and finally...

Because military satellites are blinded the USA lost their ability of detecting long-range ballistic missiles

...and finally...

Because military satellites are blinded the USA lost their ability of detecting long-range ballistic missiles

President Trump decides to launch a pre-emptive nuclear strike on North Korea

What can possibly cause such a disaster?

What can possibly cause such a disaster?

A disaster waiting to happen

- The adverse impact of space weather is estimated to cost \$200-\$400 million per year;
- losses to satellite companies range from thousands of dollars for temporary data outages up to \$200 million to replace a satellite;
- economists also estimate that timely warnings of geomagnetic storms to the electric power industry would save approximately \$150 million per year;
- a 1% gain in continuity and availability of GPS would be worth **\$180 million** per year.
- a "big one" would cause \$2.6 trillion damage

Space Weather predictions

The 1st Lagrangian point is our privileged Sun observatory from which we gather:

- remote images
 - in situ data

L1 data are then complemented with ground-based and low altitude satellites data

Our project (CWI / INRIA)

Machine Learning for Space Weather

Home Team Projects Publications Resources Jobs Contact Us

Coupling physics-based simulations with Artificial Intelligence

Goal

In this project we aim at enhancing the current state-of-the-art simulations for Space Weather, by using prior knowledge gathered from historical satellite data. Several Machine Learning techniques will be used for data-mining, classification, and regression. The long-term objective of the project is the creation of a portfolio of data-enhanced reduced models, along with automated rules for model selection. Depending on the real-time conditions observed by satellites, the resulting 'grey-box' model should choose the relative importance between physical and empirical estimations.

CWI/INRIA consortium

This project has started as funded by a CWI/INRIA collaboration. However, several other parties have joined in this activity, either as external collaborators, or more actively involved. Visit the team page for a list of all the people involved.

CWI is the Dutch National Center for Mathematics and Computer Science. INRIA is the French Institute for Research in Computer Science and Automation.

www.mlspaceweather.org

The gray-box paradigm

A quick overview

Information theory

 Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. (2016). Information theoretical approach to discovering solar wind drivers of the outer radiation belt. *J. Geophys. Res.*

Uncertainty Quantification

- Camporeale, E., Shprits, Y., Chandorkar, M., Drozdov, A., Wing, S. (2016) On the propagation of uncertainties in radiation belt simulations, *Space Weather*
- Camporeale, E., A. Agnihotri, C. Rutjes (2016) Adaptive selection of sampling points for uncertainty quantification, *J. Sci. Comp.*, under review.

Machine Learning

 Chandorkar, M., Camporeale, E., Wing, S. (2016) Gaussian Processes Autoregressive Models for Forecasting the Disturbance Storm Time Index, *J. Space Weather Space Clim.*, under review

Information theory

Question: which quantity in the solar wind drives the changes in electron flux in the radiation belt?

Entropy: $H(x) = -\sum_{\aleph_1} p(\hat{x}) \log p(\hat{x}); \quad H(y) = -\sum_{\aleph_2} p(\hat{y}) \log p(\hat{y})$ Joint Entropy: $H(x, y) = -\sum_{\aleph_1 \aleph_2} p(\hat{x}, \hat{y}) \log p(\hat{x}, \hat{y})$

Mutual information (not directional) MI(x, y) = H(x) + H(y) - H(x, y)

Conditional mutual information

$$\mathsf{CMI}(x, y \mid z) = \sum_{\aleph_1 \aleph_2 \aleph_3} p(\hat{x}, \hat{y}, \hat{z}) \log \frac{p(\hat{x}, \hat{y} \mid \hat{z})}{p(\hat{x} \mid \hat{z}) p(\hat{y} \mid \hat{z})} = H(x, z) + H(y, z) - H(x, y, z) - H(z)$$

Information theory

Conditional mutual information

$$\mathsf{CMI}(x, y \mid z) = \sum_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3} p(\hat{x}, \hat{y}, \hat{z}) \log \frac{p(\hat{x}, \hat{y} \mid \hat{z})}{p(\hat{x} \mid \hat{z}) p(\hat{y} \mid \hat{z})} = H(x, z) + H(y, z) - H(x, y, z) - H(z)$$

Transfer entropy

$$\mathsf{TE}_{x \to y}(\tau) = \mathsf{CMI}(y(t + \tau), x(t) | yp(t))$$

where $yp(t) = [y(t), y(t - \Delta), ..., y(t - k\Delta)]$. The transfer entropy can be considered as a conditional mutual information that detects how much average information is contained in an input, *x*, about the next state of a system, *y*, that is not contained in the past history, *yp*, of the system [*Prokopenko et al.*, 2013].

Solar wind velocity vs RB flux

Table 1. Ranking of the Importance of the Solar Wind Parameters Based on Information Transfer to Geosynchronous MeV Electron Flux (J_e) at τ_{max} , Where τ_{max} is the Lag Time When the Information Transfer Peaks^a

Rank	Solar Wind Parameters	Peak Information Transfer (it _{max})	Signal-to-Noise Ratio at $ au_{max}$	Significance at τ_{max} (σ)	^τ max (days)	Prediction Horizon (days)
1	V _{sw}	0.25	6.6	94	2	10 ^b
2	IMF B	0.12	3.9	48	0	2
3	P _{dyn}	0.092	3.4	35	0	2
3	n _{sw}	0.091	3.2	34	0	2
4	σ(IMF <i>B</i>)	0.075	3.9	48	0	2
5	IMF $B_z < 0$	0.064	2.7	26	0	2
6	Esw	0.056	2.9	22	1	5
7	IMF B _V	0.052	2.3	20	0	2
8	IMF $B_z > 0$	0.048	3.1	22	0	2
9	IMF B _x	0.044	2.2	19	0	2

Uncertainty Quantification

RALPH C. SMITH

Uncertainty Quantification

Theory, Implementation, and Applications

Probably, the most used methods are *non-intrusive*, which means that a **black-box computational model** is used repeatedly, for different inputs. The main question is:

What input parameters do you choose? (sampling problem)

- Monte Carlo
- Quasi Monte Carlo
- Stochastic Collocation
- •
- etc.

A simple adaptive method for sampling

Interpolant: radial basis function (mesh free)

Simple consideration:

Large and small derivative of mapping function determine "flat" and "steep" regions in the cumulative distribution function.

This is "more or less" all you need to determine your sampling points!

 $g(x) = \arctan(10^3x^3)$. Top panel: g(x); bottom panel: cdf C(y).

UQ on radiation belt simulations

Gaussian Processes for forecasting the DST index

The DST index is a proxy for the geomagnetic activity

Gaussian Processes in a nutshell

We want to infer the values of an unknown function *f*. We assume that the conditional distribution of *f* with respect to input data is normally distributed.

$$\mathbf{f} = \begin{pmatrix} f(\mathbf{x}_{1}) \\ f(\mathbf{x}_{2}) \\ \vdots \\ f(\mathbf{x}_{N}) \end{pmatrix}$$

$$\mathbf{f}[\mathbf{x}_{1}, \dots, \mathbf{x}_{N} \sim \mathcal{N}(\mu, \mathbf{\Lambda})$$

$$p(\mathbf{f} \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{N}) = \frac{1}{(2\pi)^{n/2} det(\mathbf{\Lambda})^{1/2}} exp\left(-\frac{1}{2}(\mathbf{f}-\mu)^{T} \mathbf{\Lambda}^{-1}(\mathbf{f}-\mu)\right)$$

$$\mu_{i} = \mathbb{E}[f(\mathbf{x}_{i})] \coloneqq m(\mathbf{x}_{i})$$

$$\Lambda_{ij} = \mathbb{E}[(f(\mathbf{x}_{i}) - \mu_{i})(f(\mathbf{x}_{j}) - \mu_{j})] \coloneqq K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
We need to specify the covariance matrix (kernel)

Gaussian Processes in a nutshell

The conditional distribution on new test points can be computed analytically (because we are dealing with Gaussian)

 $\mathbf{f}_*|\mathbf{X},\mathbf{y},\mathbf{X}_*\sim \mathcal{N}(\mathbf{\bar{f}}_*,\boldsymbol{\Sigma}_*),$

where

$$\mathbf{\bar{f}}_* = \mathbf{K}_*^T [\mathbf{K} + \sigma^2 \mathbf{I}]^{-1} \mathbf{y}$$

$$\Sigma_* = \mathbf{K}_{**} - \mathbf{K}_*^T (\mathbf{K} + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_*$$

GP models do not make point predictions but output predictive (normal) distributions

CWI GP-ARX is the best model on the market!

Future challenges

- Bayesian parameter estimation (inverse problem) to feed physics-based models
- Classification and regression of solar wind and magnetospheric conditions based on solar images

Future challenges

- Bayesian parameter estimation (inverse problem) to feed physics-based models
- Classification and regression of solar wind and magnetospheric conditions based on solar images

80% chance of a geomagnetic storm!