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Imagine a day...

No GPS DEPARTURES

TIME  DESTINATION  FLIGHT  GATE REMARKS
12:39 LONDON BA 903 B CANCELLED
H2E 5 SYDNEY f(IESH23 2 CANCELLED
18 OEBRIEORONED AC5984 22 CANCELLED
TE A TOKYO JL 608 2l DELAYED
il 15 5 8 HONG KONG %54 7 29 CANCELLED

Y Drllllng, agrlculture 13:48 MADRID IB3941 30 DELAYED
1419 BERLIN LH5021 28 CANCELLED

* Aviation 14:35 NEW YORK RENGEZNINIINNNERREERRED
14:54 PARIS EEGEZEENNEENNEBENERED

. :
Railways 15:10 ROME AZ5324 43  CANCELLED




Imagine a day...

GPS provides precise time
stamps to:

* Communications systems
* Electrical power grids
* Stock market



...and this is only the start

Imagine if...

* Several high-voltage
transformers would be
damaged, causing

widespread blackouts,
affecting:

* Transportation
* Water supply

* Communication
* Industry




...and finally...

Because military satellites are blinded the USA lost their
ability of detecting long-range ballistic missiles



...and finally...

Because military satellites are blinded the USA lost their
ability of detecting long-range ballistic missiles

President Trump decides to launch a pre-emptive nuclear
strike on North Korea




What can possibly cause

such a disaster?
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A disaster waiting to happen

* The adverse impact of space weather is estimated
to cost $200-$400 million per year; \

* losses to satellite companies range from §$%\\

thousands of dollars for temporary data outages

up to $200 million to replace a satellite;

* economists also estimate that timely warnings of

geomagnetic storms to the electric power industry

would save approximately $150 million per year;

* a 1% gain in continuity and availability of GPS

would be worth $180 million per year.

From
The book of
bunny suicides

a “big one” would cause $2.6 trillion damage




Space Weather predictions

The 1%t Lagrangian
point is our privileged
Sun observatory from
which we gather:

— remote images

— In situ data

L1 data are then
complemented with
ground-based and low
altitude satellites data




Our project (CWI / INRIA

[
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Coupling physics-based simulations with Artificial
Intelligence

Goal

In this project we aim at enhancing the current state-of-the-art simulations for Space Weather, by using prior knowledge gathered from historical
satellite data. Several Machine Learning techniques will be used for data-mining, classification, and regression. The long-term objective of the
project is the creation of a portfolio of data-enhanced reduced models, along with automated rules for model selection. Depending on the real-time
conditions observed by satellites, the resulting 'grey-box' model should choose the relative importance between physical and empirical estimations.

CWI/INRIA consortium

This project has started as funded by a CWI/INRIA collaboration. However, several other parties have joined in this activity, either as externa
collaborators, or mare actively involved. Visit the team page for a list of all the people involved.

W r
,
Centrum Wiskunde & Informatica ;qlb

INVENTELIRS DU MONDE NUMERIQUE

CWI is the Dutch National Center for Mathematics and Computer Science. INRIA is the French Institute for Research in Computer Science and
Automation.

www.mlspaceweather.org



The gray-box paradigm

First-principles | Model
model reduction

“learn” the parameters



A quick overview

* Information theory

Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. (2016). Information
theoretical approach to discovering solar wind drivers of the outer radiation belt.
J. Geophys. Res.

* Uncertainty Quantification

Camporeale, E. , Shprits, Y., Chandorkar, M., Drozdov, A., Wing, S. (2016) On the
propagation of uncertainties in radiation belt simulations, Space Weather

Camporeale, E. , A. Agnihotri, C. Rutjes (2016) Adaptive selection of sampling
points for uncertainty quantification, J. Sci. Comp., under review.

* Machine Learning

Chandorkar, M., Camporeale, E., Wing, S. (2016) Gaussian Processes
Autoregressive Models for Forecasting the Disturbance Storm Time Index, J.
Space Weather Space Clim., under review



Information theory

Question: which quantity in the solar wind drives the
changes in electron flux in the radiation belt?

Entropy: ~ Hw= - 2 pk)legp); Hly Zp ) log p(y
Joint Entropy: A= - 2_plx. ) 1og p(%. )
Ny N
Mutual information (not directional)
Mi(x,y) = H(x) + H(y)=H(x,y)

Conditional mutual information

, . o p(x.,y|z)
CMI(x, y | z) XV, Z)log———————F—
¥ H%}PR Y % 12) Py [ 2)

H(x,z) + H(y.z) -H(x,y.z)-H(z)



Information theory

Conditional mutual information

. o p(x,y|z)
CMI(x. Z x.v. Z)lo —— —
(x,y|2) u%f{ ¥, 2109 1 o7 13

H(x.z) + H(y.z) -H(x,y, z)-H(z)

Transfer entropy
TEy(r) = CMI(y(t+ 7),x(t)[yp(t))

where yp(t) = [y(t), y(t —A), ..., y(t— kA)]. The transfer entropy can be considered as a conditional mutual infor-
mation that detects how much average informationis contained inan input, x,about the next state of a system,
y, thatis not contained in the past history, yp, of the system [Prokopenko et al., 2013].



Solar wind velocity vs RB flux

log RB J, ( counts [cm2 s srkeV ]1)

RB MeV electron flux(t) Vs. V,,(t)
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Table 1. Ranking of the Importance of the Solar Wind Parameters Based on Information Transfer to Geosynchronous
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Rank Solar Wind Peak Information Signal-to-Noise Significance Tmax Prediction
Parameters Transfer (itmay) Ratio at trnax at Tmax (@) (days) Horizon (days)

1 Vi 0.25 66 94 2 10°

2 IMF |B| 012 39 43 0 2

3 Py 0.092 34 35 0 2

3 Moy 0.09 3.2 34 0 2

4 o(IMF B) 0.075 39 43 0 2

5 IMF B; <0 0.064 27 26 0 2

6 E 0.056 29 22 1 5

7 IMF B, 0.052 23 20 0 2

8 IMF B; =0 0.048 3.1 22 0 2

9 IMF B, 0.044 22 19 0 2

35

40



Uncertainty Quantification

RALPH C. SMITH

Uncertainty Quantification
Theory, Implementation, and Applications

| Computatiocnal Science & Engineering | . |

i —

TR et -

Probably, the most used methods
are non-intrusive, which means that
a black-box computational model
is used repeatedly, for different
inputs. The main question is:

What input parameters do you
choose? (sampling problem)

* Monte Carlo
* Quasi — Monte Carlo
Stochastic Collocation

etc.



A simple adaptive

method for sampling

Interpolant: radial basis
function (mesh free)

Simple consideration:

-1 08 06 -04 02 0 02 04 06 08 I

Large and small derivative
of mapping function 1
determine “flat” and “steep” _

regions in the cumulative &%
distribution function.

[} | | 1 1 | |
-2 -1.5 -1 -0.5 0 0.5 ] 1.5 2

This is “more or less” all | R
you need to determine
your sampling points!

g(z) = arctan(10°z%). Top panel: g(z); bottom panel: cdf C(y).



UQ on radiation belt

simulations

E =2 MeV; Time = 2 days

E =2 MeV; Time = 1 day E =2 MeV; Time = 3 days
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Gaussian Processes for

forecasting the DST index

The DST index is a proxy for the geomagnetic
activity
Example 30-Day Dst Plot for the 2003 Halloween Storm

Atmospheric and Environmental Research Storm Classification by Shaded Regions
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Gaussian Processes In a nutshell

We want to infer the values of an unknown function f. We
assume that the conditional distribution of fW|th respect
to input data is normally distributed.

fxq) )
f(x2)
f = ,
Jf(Xn) J
fl?{l."*.?{p.; ~ N{Jﬂ'\] > o 1
I ' input, x

|
fXp, . Xy) = -5 (- AN -
p(f | x4 Xy) Oy Pdet AT Sexp ( ;r] ( ;r])

We need to specify the

Hi = Bl ()] = mix;) 4 covariance matrix (kernel)

J\U = T[(f(\;} - ,U;'H}(I(?{_Jf] _!U_Jf}] = K(K;.L_;]



Gaussian Processes In a nutshell

The conditional distribution on new test points can be

computed analytically (because we are dealing with
Gaussian)

£X,y. X, ~ N(E.Z,).

where GP models do not make
point predictions but output
= KI[K+ Iy predictive (normal)
- K..-K' (K+ [rl)“ K. distributions



CWI GP-ARX is the best model

on the market!

0.8-
0.8
0.7
=
ﬁ 0.6- model
S) GP-AR
oo GP-ARX
2 v
o Persist(1)
2 0.4 TL
o
0.3
0.2
0.1
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
M
|Dst— Dst}/|Dst]



Future challenges

* Bayesian parameter estimation (inverse problem) to
feed physics-based models

* Classification and regression of solar wind and
magnetospheric conditions based on solar images



Future challenges

* Bayesian parameter estimation (inverse problem) to
feed physics-based models

* Classification and regression of solar wind and
magnetospheric conditions based on solar images

G m=) Dog!

80% chance of
a geomagnetic
storm!
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