The origin of lightning

Casper Rutjes

Introduction

Balloon measurements

photos from: Langmuir Lab, central New Mexico, 1999 (Marshall, Stolzenburg et al.)

Balloon measurements

all measured electric fields are too low to start classical breakdown

figure: Stolzenburg & Marshall. Space Sc. Rev. 137.1-4 (2008): 355-372.

Droplets and ice particles

increases the electric field (potentially above breakdown), but only very locally

Cosmic rays (mainly protons): Lower energy rays from the Sun, frequent, above ~3 km Higher energies from (extra-)galactic origin, rare events

Cosmic rays (mainly protons): Lower energy rays from the Sun, frequent, above ~3 km Higher energies from (extra-)galactic origin, rare events -> window to cosmology

Cosmic rays (mainly protons): Lower energy rays from the Sun, frequent, above ~3 km Higher energies from (extra-)galactic origin, rare events -> window to cosmology

Intermezzo;

Footprint of shower changes due to the thunderstorm.

New way of probing electric fields!

Phys. Rev. Lett. 114, 165001 (2015) **Nature Science The New Hork Times nrc.nl>**

Radiotelescope LOFAR Drente Netherlands

E. field + Ice particle + Free electrons

From the initial conditions to discharge inception is a non-linear time-dependent problem

electrons

 $\partial_t n_i =$ ions

electric potential $\nabla(\epsilon \nabla \phi) = \frac{e}{\epsilon_0}(n_i - n_e)$ \rightarrow electric field $\vec{E} = -\nabla \phi$

drift diffusion reaction $\partial_t n_e = \nabla \cdot (\mu \vec{E} n_e + D \nabla n_e) + (\alpha - \eta) \mu E n_e + S_{\rm ph}$ $(\alpha - \eta)\mu E n_e + S_{\rm ph}$

E. field + Ice particle + Free electrons Shown case: 0.7 x 6 cm length, Field 15% breakdown, altitude 5.5 km, background electron density 10² cm⁻³ cylindrical symmetric approximation

Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers

Anna Dubinova,^{1,*} Casper Rutjes,^{1,†} Ute Ebert,^{1,2} Stijn Buitink,³ Olaf Scholten,^{3,4} and Gia Thi Ngoc Trinh⁴

Inception from large ice particle (6 cm length) is possible; right conditions occur at least 5 times per km² per minute.

but is it possible to start from smaller ice particles (or droplets) and how often does that occur?

Smaller ice particles?

?? maybe the balloons just went to the wrong places ??

?? maybe there are rare events of cosmic showers ??

Extensive air shower - rare event analysis

The number of events *k* Poisson distributed.

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 $\lambda = FLUX \times AREA \times TIME$

Per incoming cosmic particle huge shower-to-shower fluctuations

Computed dataset

For each simulation

Probability distribution of the maximal output

Number of leptons (> 50 keV) in the shower <10 cm from the centre

Probability distribution of the maximal output Median (of lognormal fits) $\times 10^4$ 13 <10 cm from the centre 12 50 keV) 5 11 Altitude (km) Number of leptons (> 10 9 3 8 he shower 7 6 5 i D t 10^{0} 10^{-1} 10^{1}

Conclusions & outlook

- To start lighting:
 1. thundercloud E field
 2. ice particle
 3. free electrons
- Smaller ice particles? Lower fields? -> More free electrons!
- Maximal free electron density is lognormal distributed and very sensitive on system size.
- [Outlook] predict streamer inception near insulators (e.g. ice), in thunderstorms and high-voltage technology.

possible to start streamer, demonstrated for large ellipsoidal ice particles *Dubinova, Rutjes, Ebert et al. (2015)*

