Communication using quantum entanglement: benefits and limitations

Teresa Piovesan

CWI Scientific Meeting Amsterdam, 13 May 2016

GOAL:

- $\mathbf{y} = \mathbf{x}$ with high probability

GOAL:

- $\mathbf{y} = \mathbf{x}$ with high probability
- maximize m

Block coding

• Encoding x into a sequence of channel inputs can be more efficient

Block coding

ullet Encoding $oldsymbol{x}$ into a **sequence** of channel inputs can be more efficient

Shannon (1948):

Number of bits that can be theoretically transmitted per channel use

Block coding

• Encoding x into a sequence of channel inputs can be more efficient

Shannon (1948):

Number of bits that can be theoretically transmitted per channel use

• error probability goes to zero as $\mathbf{n} \to \infty$

Quantum entanglement

Entanglement is one of the most striking features of quantum mechanics Measurements on *entangled* quantum systems can give outcomes that are non-classically correlated

Quantum entanglement

Entanglement is one of the most striking features of quantum mechanics Measurements on *entangled* quantum systems can give outcomes that are non-classically correlated

Quantum entanglement

Entanglement is one of the most striking features of quantum mechanics Measurements on *entangled* quantum systems can give outcomes that are non-classically correlated

Can entanglement be beneficial?

Can entanglement be beneficial?

Depends

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

Bennett–Shor–Smolin–Thapliyal (2002) proved that entanglement *cannot* help

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

Bennett–Shor–Smolin–Thapliyal (2002) proved that entanglement *cannot* help

X

Finite number of channel uses

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

Bennett–Shor–Smolin–Thapliyal (2002) proved that entanglement *cannot* help

• Finite number of channel uses

Prevedel et al.(2011): experimental result

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

Bennett–Shor–Smolin–Thapliyal (2002) proved that entanglement *cannot* help

Finite number of channel uses

Prevedel et al.(2011): experimental result

Probability of error equal to zero

• Shannon regime: probability of error tends to zero as number of uses of the channel goes to infinity

Bennett–Shor–Smolin–Thapliyal (2002) proved that entanglement *cannot* help

Finite number of channel uses

Prevedel et al.(2011): experimental result

Probability of error equal to zero

	One-shot	Asymptotic
Classical		
Quantum		

	One-shot	Asymptotic
Classical	$\alpha(G)$	<i>c</i> (<i>G</i>)
Quantum		

	One-shot		Asymptotic
Classical	$\alpha(G)$	<	<i>c</i> (<i>G</i>)
Quantum			

	One-shot		Asymptotic	
Classical	$\alpha(G)$	<	<i>c</i> (<i>G</i>)	Shannon 1956
Quantum				

• \exists graph G : $\alpha(G) < c(G)$

	One-shot		Asymptotic
Classical	$\alpha(G)$	<u>≤</u>	c(G)
Quantum	$\alpha^{\star}(G)$		

•
$$\exists$$
 graph G : $\alpha(G) < c(G)$

	One-shot		Asymptotic
Classical	$\alpha(G)$	\leq	<i>c</i> (<i>G</i>)
	^		
Quantum	$\alpha^{\star}(G)$		

Cubitt et al. 2010

• \exists graph G : $\alpha(G) < \alpha^*(G)$

	One-shot		Asymptotic
Classical	$\alpha(G)$	\leq	<i>c</i> (<i>G</i>)
Quantum	$\alpha^{\star}(G)$	\leq	$c^{\star}(G)$

- \exists graph G : $\alpha(G) < c(G)$
- \exists graph G : $\alpha(G) < \alpha^*(G)$

	One-shot		Asymptotic
Classical	$\alpha(G)$	<u>≤</u>	c(G)
	ΛΙ		\wedge I
Quantum	$\alpha^{\star}(G)$	\leq	$c^{\star}(G)$

- \exists graph G : $\alpha(G) < c(G)$
- \exists graph G : $\alpha(G) < \alpha^*(G)$

	One-shot		Asymptotic	
Classical	$\alpha(G)$	≤ 7	<i>c</i> (<i>G</i>)	Leung et al. 2012
Quantum	$\alpha^{\star}(G)$	<u>≤</u>	$c^*(G)$	Briët et al. 2012

- \exists graph G : $\alpha(G) < c(G)$
- \exists graph G : $\alpha(G) < \alpha^*(G)$
- \exists graph G : $c(G) < c^*(G)$

	One-shot		Asymptotic	
Classical	$\alpha(G)$	\leq	c(G)	
	\wedge I		\wedge	Briët et al. 2015
Quantum	$\alpha^{\star}(G)$	\leq	$c^{\star}(G)$	

- \exists graph G : $\alpha(G) < c(G)$
- \exists graph G : $\alpha(G) < \alpha^*(G)$
- \exists graph G : $c(G) < c^*(G)$

	One-shot		Asymptotic	
Classical	$\alpha(G)$	<u> </u>	c(G)	
	٨١		\wedge	Briët et al. 2015
Quantum	$\alpha^{\star}(G)$	\leq	$c^{\star}(G)$	

• \exists graph G : $\alpha(G) < c(G)$

• \exists graph G : $\alpha(G) < \alpha^*(G)$

• \exists graph G : $c(G) < c^*(G)$

Thank you!