

Cryptanalysis of the cryptographic standard SHA-1

Marc Stevens
Cryptology Group
CWI Amsterdam

joint work with Pierre Karpman (Inria, NTU) & Thomas Peyrin (NTU)

Background

Cryptographic hash functions

$$H: \{0,1\}^* \longrightarrow \{0,1\}^N$$

$$\longrightarrow \emptyset$$

Collision resistance (informal)

Infeasible to find $x \neq y$ with SHA-1(x)=SHA-1(y) (Generic attack: $O(2^{N/2})$)

- Weak: MD5 [Riv92], SHA-1 [NIST1995]
- Secure: SHA-2 [NIST2001], SHA-3 [NIST2015]

Merkle-Damgård Construction

- Splits message into 512-bit blocks
- Processes them iteratively using compression function

Security proof

- \circ (H collision \Rightarrow C.F. collision)
- $\circ \Rightarrow$ (C.F. collision resistant \Rightarrow H collision resistant)
- $\circ \Rightarrow$ (C.F. collision \Rightarrow ? (no security proof))

SHA-1 Compression function

- Linearly expand 16 words (32-bits) of message to 80 words
- Non-linear step function on 5 state words & 1 message word
- Davies-Meyer feedforward of Chaining Value

Digital signature standards based on

Widely-used standards: (MD5-RSA,) SHA-1-RSA, SHA-2-RSA

Security depends on **collision resistance** of hash function

[Wang et al. 2004]

• Breakthrough cryptanalytic attacks

- Theoretical & practical break of hash function MD5
- Limited impact: identical-prefix collisions

[2007&2009 <u>Stevens</u> et al.]

• more versatile: **chosen-prefix collision** attacks

• Practical: realistic abuse scenario with high impact

	M	D5	SH	A-1	SHA-256			
	Id.Pr.	Ch.Pr.	Id.Pr.	Ch.Pr.	Id.Pr.	Ch.Pr.		
Birthday	$2^{64.3}$	2 ^{64.8}	280.3	280.8	2 ^{128.3}	$2^{128.8}$		
2004	2^{40}		2 ⁶⁹					
2005	2 ³⁷		(2^{63})					
2006	2 ³²	2 ⁴⁹						
2007	2^{25}	2 ⁴²	(2^{61})					
2008	2^{21}							
2009	2 ¹⁶	2 ³⁹						
2010								
2011								
2012			2 ⁶¹	2 ⁷⁷				
today	2 ¹⁶	2 ³⁹	2 ⁶¹	2 ⁷⁷	2 ^{128.3}	2 ^{128.8}		

Published collision attacks on MD5 & SHA-1

• [NIST2011] Special Publication 800-131A

Hash Function		Use
SHA-1	Digital signature generation Digital signature generation	Acceptable: -2010 Defected: 2011-2013 Disfected: 2014- Acceptable: -2010 Legacy-use: 2011-
	Other applications	Acceptable

• [Schneier2012]: Projected costs of SHA-1 collisions

\$2.77M in 2012

\$700K by 2015

\$173K by 2018

\$43K by 2021

(based on [Stevens12], Amazon EC2 rates & Moore's Law)

- Actual CA/Browser Forum policy:
 - o SHA-1 digital signature generation up to 1 Jan. 2016 (proposal: 1 Jan. 2017)
 - SHA-1 digital signature verification up to 1 Jan. 2017

Prior work

• (Identical-prefix) collision attacks on full SHA-1

Birthday search : 2⁸⁰
 [WYY05] : 2⁶⁹

• Wang, Yao, Yao 2005 : **2**⁶³ (no publication, partially verified)

• [SKI06] : ?? (2^{52} symbolic message modifications $x2^{23}$?)

• Mendel et al. 2007 : $2^{60.x}$ (no publication)

• [MHP09] : **2**⁵² (withdrawn)

• Chen 2011 : 2^{58} (not peer-reviewed, too optimistic by factor $2^{3.5}$)

• [<u>Stevens</u>13] : **2**⁶¹

• Example reduced-round SHA-1 collisions

 \circ [DR06] : 2^{35} (64 out of 80 steps)

• [DMR07] : **2⁴⁴** (70 out of 80 steps)

• [Gre10] : **2**^{50.7} (73 out of 80 steps)

 \circ [GA11] : **2**^{57.7} (75 out of 80 steps) (10,000 GPU-days, 1GPU≈40cores)

Our work

Our work

- Example SHA-1 collisions thought to be imminent since 2005
- Previous works show analysis more complicated & too high cost
- Our research directions
 - 1. Precise analysis
 - ⇒ optimal complexity & degrees of freedom
 - 2. Use massively-parallel architectures: graphic cards (GPUs)
 - ⇒ more cost efficient
 - 3. Collisions on (reduced-round) SHA-1's Compression Function
 - ≡ freestart collision attack on (reduced-round) SHA-1
- Our results: freestart collision attacks on SHA-1
 - ∘ [KP<u>S</u>15] : **2**^{50.3} (76 out of 80 steps) (5 GPU-days, 1GPU≈140cores)
 - ∘ [SKP16] : $\mathbf{2}^{57}$ (80 out of 80 steps) (640 GPU-days, 1GPU≈140cores)
 - First practical attack on full SHA-1!
 - More efficient GPU implementation (prev: 1GPU≈40cores)
 - Estimations for cost of collision attack on full SHA-1
 - : 2^{61} (SHA-1 collision) (40,000 GPU-days, EC2 \approx \$100k)

SHA-1 cryptanalysis

Differential path

- Precise description of how differences propagate through compression function
- Last 60 steps determine most of attack's complexity
- [Stevens13]
 precise methods to determine
 optimal differential paths
 [KPS15,SKP16] improvements
 (very technical, omitted here)
- Translate differential path into system of equations to solve

SHA-1 cryptanalysis

System of equations

- Simple equations
 on expanded message bits
 ⇒ linear equations
 on input message bits
- Simple equations on state bits
- First 16 steps easily solved
 ⇒ all message bit equations fulfilled
 ⇒ determines remaining 64 steps
- Make predictable small changes to solve up to step 24 (amortizes cost of earlier steps)
 ⇒ only control about 30% of SHA-1
- Find many solutions up to step 24 to probabilistically fulfill remaining steps

Freestart

Freestart collision attack

- Start from the middle
 - Advantage:higher probability diff.path⇒ lower complexity
 - Disadvantage: cannot control input CV
 - $\circ \Rightarrow$ collision for C.F.
- Motivation
 - Invalidates security proof
 - Intermediate results
 - To perfect cryptanalysis tools
 - Testbed for GPU implementation

- Nvidia GTX-970
- Recent, high-end, good price/performance
- 13 x 128 = 1664 cores @ 1.2 GHz
- High-level programming with CUDA
- Throughput for 32-bit arithmetic: all 1/cycle/core (except rotl/rotr)
- ∘ ≈ € 350
- Single Instruction Multiple Threads
 - Execution is bundled in **warps** of 32 threads
 - Control-flow divergence is serialized ⇒ minimize branching
- Hide latency by running more threads than cores
 - Transparent scheduling of actionable warps to cores
- Be careful: incoherent memory reads/writes are slow

- [KPS15,SKP16] GPU tree search framework
 - 1. Store partial solutions up to some step in shared buffers
 - 2. Every thread of a warp loads one solution
 - 3. ... tries all degrees of freedom for this step
 - 4. ... stores successful larger partial solution in next step buffer
- Depth-first search: always process last queue with enough work

GPU vs CPU

- Freestart 76-step SHA-1 [KPS15]
 - Initial GPU implementation: only easy speed-up tricks
 - \circ On one GPU, the attack takes ≈ 4.2 days
 - \circ On one CPU core @ 3.2 GHz, the attack takes ≈ 606 days
 - $\circ \Rightarrow$ One GPU $\equiv 140$ CPUcores
 - \circ (To compare with $\equiv 40$ [GA11])
 - For raw SHA-1 computations, ratio is 320
 - ⇒ Relative loss of only ×2.3 due to branching
 (better than expected for a highly branching tree search!)

- Freestart full SHA-1 (80-steps) [SKP16]
 - Second generation implementation: also advanced speed-up tricks
 - Complexity: 2⁵⁷
 - ∘ ≈10 days on 64 GPUs (16 desktops with 4 GTX970 each)
 - First practical attack on full SHA-1

									N	_{less}	age	1								
IV_1	50	6b	01	78	ff	6d	18	90	20	22	91	fd	3a	de	38	71	b2	с6	65	ea
M_1			9d	44	38	28	a 5	ea	3d	f0	86	ea	a0	fa	77	83	a7	36		
			33	24	48	4d	af	70	2a	aa	a3	da	b6	79	d8	a6	9e	2d		
			54	38	20	ed	a7	ff	fb	52	d3	ff	49	3f	сЗ	ff	55	1e		
			fb	ff	d9	7f	55	fe	ee	f2	80	5a	f3	12	80	86	88	a9		
$Compr(IV_1, M_1)$	f0	20	48	6f	07	1b	f1	10	53	54	7a	86	f4	a7	15	3b	3с	95	0f	4b
1 (-/ -/																				
1 (1/ 1/									N	less	age	2								
IV_2	50	6b	01	78	ff	6d	18	91					3a	de	38	71	b2	c6	65	ea
1 (2, 2)	50	6b				6d 38			a0	22	91	fd							65	ea
IV_2	50	6Ъ	3f	44	38		81	ea	a0 3d	22 ec	91 a0	fd ea	a 0	ee	51	83	a7	2c	65	ea
IV_2	50	6b	3f 33	44 24	38 48	38	81 ab	ea 70	a0 3d 2a	22 ec b6	91 a0 6f	fd ea da	a0 b6	ee 6d	51 d4	83 a6	a7 9e	2c 2f	65	ea
IV_2	50	6b	3f 33 94	44 24 38	38 48 20	38 5d	81 ab 13	ea 70 ff	a0 3d 2a fb	22 ec b6 4e	91 a0 6f ef	fd ea da ff	a0 b6 49	ee 6d 3b	51 d4 7f	83 a6 ff	a7 9e 55	2c 2f 04	65	ea

Full SHA-1

- Predictions for cost of collisions for full SHA-1
 - ° Complexity: 2⁶¹ [Stevens 13]
 - \circ ≈ 40,000 GPU days (Amazon EC2: older GPUs)
 - ∘ ≈ \$100k renting fee on Amazon EC2 (spot-prices)
 - ∘ × 7 lower cost in 2015 than predicted earlier by Schneier

Impact & Conclusion

Industry Impact

- CA/Browser Forum: Ballot 152
 - Extend issuance SHA-1 certificates up to 1 Jan. 2017 (before: 1 Jan. 2016)
 - o (unaltered: deprecate SHA-1 certificates after 1 Jan. 2017)
 - o Proposed/endorsed by Entrust, Microsoft, Trend Micro
 - Seemingly enough support to pass
 - o Our recommendations on 8 Oct. ensured Ballot did not pass on 16 Oct.
- Certification Authorities have found loop-hole
 - Withdraw older CA certificate from Browser root-CA-stores
 - → not encumbered by CA/Browser regulations → can sign SHA-1
- Mozilla, Microsoft & Google:
 - o Possibly deprecate SHA-1 certificates per 1 July 2016

- TLS 1.3 draft 9
 - Deprecated all uses of SHA-1 digital signatures

Conclusion

- Improved cryptanalysis of SHA-1 using
 - Precise analysis methods (omitted here)
 - More efficient GPU tree search framework
- Freestart collision attacks on
 - o 76-step SHA-1
 - ∘ Full SHA-1! ⇒ first practical attack on full SHA-1
 - ∘ ⇒ invalidates SHA-1's collision resistance proof
- Work-in-progress
 - Collision attack on full SHA-1
- Industry is deprecating SHA-1 painstakingly slow
 - SHA-1 has been used ubiquitously as de facto industry standard
 ⇒ very hard and costly to deprecate everywhere
 - o CA/Browser forum is at the frontier, but deprecating per 1 Jan. 2017
 - → Need practical examples to speed-up deprecation
- Note: counter-cryptanalysis [Stevens13b]
 - Detect digital signature forgeries constructed using collision attack
 - \circ Practical & real-time: only \times 2 as slow as plain SHA-1

Thank you!

SHA-1 cryptanalysis

Attacks on SHA-1 based on near-collision attacks

Identical-prefix collision attack

Chosen-prefix collision attack

SHA-1 cryptanalysis

- Attacks on SHA-1 based on near-collision attacks
- Near-collision attack on compression function:
 - Given input chaining value pair
 - Compute message block pair
 - To achieve 'desired' difference between output chaining values

