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This talk: online learning

Sequential decision making protocol

act

observeupdate

Definition

To learn X = act as if you already know best x ∈ X



Typical online learning applications

I Invest like best stock (or portfolio)

I Predict demand like best linear regressor (Amazon)

I Commute like best route (OSP)

I Compress like best variable-order markov model (CTW)

I Tracking the best electricity consumption forecasting company
(EDF)

I . . .



Applications outside online learning comfort-zone

I Convex optimisation, both online, and batch (SGD).

I Computing Nash equilibria in two-player zero-sum games

I Game play (Monte Carlo Tree Search, e.g. for Go)

I Boosting

I Differential Privacy

I A/B testing

I Predictive complexity (algorithmic information theory)

I . . .



Fundamental model for learning: Hedge setting

I K experts

. . .

I In round t = 1, 2, . . .
I Learner plays distribution wt = (w1

t , . . . ,w
K
t ) on experts

I Learner observes expert losses `t = (`1
t , . . . , `

K
t ) ∈ [0, 1]K

I Learner incurs loss wᵀ
t `t

I The goal is to have small regret

Rk
T :=

T∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−
T∑
t=1

`kt︸ ︷︷ ︸
Expert k

with respect to every expert k .
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Classic Hedge Result

The Hedge algorithm with learning rate η

wk
t+1 :=

e−ηL
k
t∑

k e
−ηLkt

where Lkt =
t∑

s=1

`ks ,

upon proper tuning of η ensures [Freund and Schapire, 1997]

Rk
T ≺

√
T lnK for each expert k

which is tight for adversarial (worst-case) losses

but underwhelming in practice

I Why?

I Practitioners report good performance with ad-hoc η

danger

I Can we do better?
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Beyond the Worst Case
Two reasons data is often easier in practice:

Data complexity

I Stochastic data (gap)

I Low noise

I Low variance

second-
order

Model complexity

I Simple model is good

I Multiple good models

quantiles

Second-order & Quantiles

I Any combination
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All we need is the right learning rate

Existing
algorithms
(Hedge, Prod, . . . )

with

oracle
learning rate η

exploit

Sec-ord. & Quant.

Can we exploit Second-order & Quantiles on-line?
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But everyone struggles with the learning rate
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Learning the learning rate

With Tim van Erven: New framework for algorithm
design where simply putting a prior γ on η and inte-
grating it out works.

Our algorithm Squint

wk
t+1 ∝ π(k) E

γ(η)

[
eηR

k
t−η2V k

t η
]

Sec-ord. & Quant.

guarantees for each subset K of experts, at each time T ≥ 0:

RKT ≺
√

VKT (− lnπ(K))

I Run-time of Hedge
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Conclusion

Fresh algorithm for fundamental learning task

I new “different” perspective

I same efficiency

I adaptive (better) guarantees

Currently scaling up to advanced learning tasks

I Combinatorial games

I Matrix games

I Online optimization (gradient descent)

I Very welcome to discuss further

I Try it out

http://bitbucket.org/wmkoolen/squint

http://bitbucket.org/wmkoolen/squint


Thank you!


	About Me
	Online Learning
	Hedge
	Squint

