

$L\acute{e}o \ Ducas^1$

CWI, Amsterdam, The Netherlands

CWI Scientific Meeting, November 2016.

¹Funded by a PPP Grant, between NXP and CWL. => () + ()

Cryptography

DEVICE TOP SECRET

Banking

Industrial secret

Journalism & Whistleblowing

Diplomacy & Strategy

Modern Cryptography

Provable confidentiality & integrity of communications under an assumption, e.g. factoring large integers is intractable

Cryptography

Banking

Individual privacy

Industrial secret

Journalism & Whistleblowing

Diplomacy & Strategy

Modern Cryptography

Provable confidentiality & integrity of communications under an assumption, e.g. factoring large integers is intractable

Cryptanalysis

Invalidate the assumption discard insecure schemes \Rightarrow Quantify intractability \Rightarrow select key size for standards

Cryptography from factoring

- Secret key: two large prime number p, q
- Public key: the product $N = p \cdot q$

Cryptography from Discrete Logarithm

Cryptography from Elliptic Curves Discrete Logarithm

Secret key: two large prime number p,

r<mark>y</mark>ptography from

ptography from Elliptic Curves Discrete Logarithm

- Serious concerns expressed (NSA)
- Call for Post-Quantum standards (NIST 2017-2020)

Quantum Crypto, Post-Quantum Crypto ?!

Quantum Crypto, Post-Quantum Crypto ?!

²Also called Quantum-Safe Crypto Léo Ducas (CWI)

PQ-Crypto from Lattices

Quantum Crypto, Post-Quantum Crypto ?!

²Also called Quantum-Safe Crypto Léo Ducas (CWI)

PQ-Crypto from Lattices

The Shortest Vector Problem (SVP)

The Approximate Shortest Vector Problem (Approx-SVP)

The Bounded Distance Decoding Problem (BDD)

Lattice-based Cryptography

Those problems can be harnessed for cryptography. Many advantages:

- ► Hard against quantum computing as far as we know
- Based on worst-case problems, near NP-hard problems
- Unlocks unprecedented features

The Bounded Distance Decoding Problem (BDD)

Lattice-based-crypto is as simple as Tetris

Cryptris: A video game to understand how it works, and why it is secure.

Developed in collaboration with Inria

http://inriamecsci.github.io/cryptris/ In French only (for now ?)

A New Hope [Alkim, **D.**, Poppelmann, Shwabe, 2016] Awarded the **the Internet Defense Prize** (Usenix & Facebook)

Many theoretical schemes proposed before

no parameters, unrealistic constraints, ...

NewHope: From Theory to **Practice**

- Proposed parameters with very strong Concrete security
- Countermeasure to Backdoors and Mass-Surveillance attack scenario
 e.g. LogJam attack
- Very Fast, Reasonably Compact, Simple . . .
- Open-Source
- Integrated in Boring-SSL and Chrome Browser by Google.

Algebraic structure greatly improve efficiency

Algebraic structure greatly improve efficiency but they may open the door the Shor-likes algorithm.

Algebraic structure greatly improve efficiency but they may open the door the Shor-likes algorithm.

Finding Generators using a quantum computer [Biasse-Song 2015]

Finding Mildly Short Generator

[Cramer-D.-Peikert-Regev 2015]

Generalization to more ideal lattices

[Cramer-**D.**-Wesolowski 2016]

www.quantamagazine.org/20150908-quantum-safe-encryption/

Algebraic structure greatly improve efficiency but they may open the door the Shor-likes algorithm.

Finding Generators using a quantum computer [Biasse-Song 2015]

Finding Mildly Short Generator

[Cramer-D.-Peikert-Regev 2015]

Generalization to more ideal lattices

[Cramer-**D.**-Wesolowski 2016]

www.quantamagazine.org/20150908-quantum-safe-encryption/

Some obstacle remains

- Midly short is not enough for attacks
- (Most) Crypto use lattices with **less structure**

Cryptanalysis only gets better

Much scrutiny is still needed.

Questions ?

Léo Ducas (CWI) PQ-Crypto from Lattices

æ