
PwoP: Intrusion-Tolerant and
Privacy-Preserving Sensor Fusion

Chenglu Jin
Computer Security Group @ CWI

chenglu.jin@cwi.nl

With Marten van Dijk (CWI), Michael Reiter (Duke University), Sisi Duan
(Tsinghua University), and Haibin Zhang (Beijing Institute of Technology)

Sensor Data Fusion
 Combine multiple sensor data to produce more dependable and accurate

information

 Many applications:
 Sensor networks
 Smart metering

 In particular, we are focusing on the applications in sensor-aggregator-client model.
S

S

S

S

AC

S

Client
Aggregator

Sensors

Pollution Attacks
• A small fraction of faulty sensor data can lead to a large error in the aggregated

result.

• Existing privacy-preserving works attempt to mitigate the problem by validity
proofs of each sensor inputs.

• Adversaries are still able to change the final output to some extent.

S

S

S

S

AC

S

Client
Aggregator

Sensors

100

100

18

20

22

Avg = 52

PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
1. Fault tolerant algorithms.

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

S

S

S

S

AC

S

Client
Aggregator

Sensors

PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
1. Fault tolerant algorithms.

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

2. Garbled circuits.
• Privacy: protect the privacy of individual data sources
• Authenticity: the aggregator should faithfully return the client the aggregated result rather than

some arbitrary values.
S

S

S

S

AC

S

Client
Aggregator

Sensors

only learns the output learns nothing

PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
1. Fault tolerant algorithms.

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

2. Garbled circuits.
• Privacy: protect the privacy of individual data sources
• Authenticity: the aggregator should faithfully return the client the integrated result rather than

some arbitrary values.
S

S

S

S

AC

S

Client
Aggregator

Sensors

only learns the output learns nothing

Security Assumption:
aggregator and sensors
are not colluded

Garbled Circuits
 Initially designed for secure two-party computation.

 Millionaires' problem

Who is richer, while keeping privacy?
Without a trusted third party?

Jeff Bezos Elon Musk

Garbled Circuits

AND
x y

zk0z, k1z
Alice (x)

Generator
Bob (y)

Evaluatork0x, k1x k0y, k1y

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

Ek1x(Ek1y(k1z))

Ek0x(Ek1y(k0z))

• Reveals nothing more than the output.
• Each party’s private input remains secret to the other party.

k1x

OT(k1y)
Open Ek1x(Ek1y(k1z))

Apply GC to Our System
 This architecture requires the client to run OT with sensors.

 We avoid OT by having a pre-shared key between client and each sensor, such that
they can derive the same pseudorandom numbers to encode the garbled inputs.

 This key should not be exposed to the aggregator.
 The reason for non-collusion assumption.

S

S

S

S

AC

S

Client
= Garbled circuit generator

Aggregator
= Garbled
circuit evaluator

Sensors
= Garbled inputs providers

Not practical

Marzullo’s Algorithms
 One of the fault-tolerant sensor averaging algorithms we have studied in our paper.

 It can tolerate g faulty inputs out of 2g+1 sensor inputs.

 Each sensor input is represented by an interval, which contains the midpoint and
accuracy information.
 E.g. a sensor input can be (9, 15)

Example
 5 sensor system, 2 of them can be faulty

Resulting interval

9 14

12

11

17

16
13 18

16 21

Our Protocol with Semi-Honest Clients
1. Client and sensors generate a shared random coin r.

2. Client garbles a fault-tolerant algorithm f using r, and sends Gb(f) to the
aggregator.

3. Each sensor generates garbled inputs En(Xi) using r, and sends En(Xi) to the
aggregator.

4. Aggregator evaluates the garbled circuit with inputs from all the sensors, and
outputs a garbled output Y to the client.

5. Client runs DE(Y) to get f(X)

A strong hidden assumption
 The completion of this protocol relies on the fact that all the sensors will provide an

input.

 But the sensors are controlled by adversaries.

 The attacker can easily denial-of-service this system after compromising one sensor.

Our Protocol Achieving Liveness
1. Client and sensors generate a shared random coin r.

2. Client garbles a fault-tolerant algorithm f using r, and sends Gb(f) to the
aggregator.

3. Each sensor generates garbled inputs En(Xi) using r, and sends En(Xi) to the
aggregator.

4. If aggregator does not receive all the garbled inputs before the times expires, it
requests from the client the missing garbled inputs that encode random ranges.

5. Aggregator evaluates the garbled circuit with inputs from all the sensors, and
outputs a garbled output Y to the client.

6. Client runs DE(Y) to get f(X)

Liveness is only possible because our protocol is fault-tolerant.

Implementation
 Optimized the circuit design of

Marzullo’s algorithm, which saves
more than half of the gates
comparing with a straightforward
design.

 Modified a two party garbled
circuit framework /compiler,
TinyGarble, to fit our sensor-
aggregator-client setting.

 Implemented PwoP in the modified
TinyGarble, and evaluated its
performance using up to 19
Raspberry Pi Zero W.

Circuit Design of Marzullo’s Algorithm

Why “modified” sorting network?
• Compare the two endpoints provided by each sensor to figure out left and right
• Mark each endpoint with an additional sign bit (1 or -1), indicating it is the left/right one
• Sort all endpoints according to the values of endpoints, and the sign bits need to move together

with their associated endpoints.
• Additional checking required by individual algorithms.

Sorting
Endpoints

Sweeping
Line

Index Select & Max Value Min Index

• One prefix sum can be shared for
finding both the left index and the right
index

• Algorithm specific optimizations can
reduce the width of modules and save
75% ~ 84% from a straightforward
implementation

Sign bits

n-g

Left endpoint of the result

More Algorithms

Performance Evaluation (Latency)

g = # malicious sensors

Performance Evaluation (Throughput)

g = # malicious sensors

Summary
 We formalized the problem of server-aided, privacy-preserving, fault-tolerant

sensor fusion.

 We provided an efficient framework supporting a variety of fault-tolerant sensor
fusion algorithms.

 We built a practical system for server-aided multi-sensor fusion using Raspberry Pi
Zero W and WiFi communication.

	PwoP: Intrusion-Tolerant and �Privacy-Preserving Sensor Fusion
	Sensor Data Fusion
	Pollution Attacks
	PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	PwoP: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	Garbled Circuits
	Garbled Circuits
	Apply GC to Our System
	Marzullo’s Algorithms
	Example
	Our Protocol with Semi-Honest Clients
	A strong hidden assumption
	Our Protocol Achieving Liveness
	Implementation
	Circuit Design of Marzullo’s Algorithm
	Index Select & Max Value Min Index
	More Algorithms
	Performance Evaluation (Latency)
	Performance Evaluation (Throughput)
	Summary

