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Real-life manufacturing and distribution systems: value networks

• Thousands of stockpoints
• Stochastic demand
• Stochastic flow times of 

replenishment orders
• Many correlated events
• Empirical validity required



Modelling value networks

N Number of items 
E Collection of items with exogenous demand 

ija  Number of items i  needed to create one item  j,   i=1,...,N,  ,  j=1,...,N 

T  Decision horizon 
( )iD t  Exogenous demand for item i  in period  t, t =1,...,T,  i=1,...,N 

( ),t iF t s+  Prediction made at beginning of period  t of exogenous demand for item  i  in period  
t+s, t =1,...,T,  s=0,...,T-t,  i=1,...,N 

iL  Lead time of item i,  i=1,...,N 

( )iX t  Net stock of item i  at the end of period  t,  t =0,...,T,  i=1,...,N 

( )ir t  Quantity released from item i  at the beginning of period  t, t =1,...,T,  i=1,...,N 

ih  Inventory cost per item i  in stock at the end of a period,  i=1,...,N 

kp  Penalty costs per item k shortfall at the end of a period, k E∈  

iυ  Safety stock of item i,  i=1,...,N 

 

ijaT ( )iD t( ),t iF t s+iL ( )iX t( )ir tih kpk E∈iυ
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Problem formulation
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Looks like a 
simple LP

However, Di(t)
is a random 

variable

Unsatisfied 
demand is 
backlogged



Replace demand by forecast and set a planning horizon
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Introduction of 
exogenous safety stocks 
to cope with uncertainty

Indeed this is an LP, can 
be solved easily and is 
the basis for decision 

support systems

But how to set 
these safety stocks?

Is this a good idea for 
determining a policy 

under stochastic 
demand



Finite horizon SDP formulation
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Infinite horizon SDP formulation
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We need 2 things:
1. Optimal policy structure
2. Algorithm to compute 

the optimal policy



echelon stock

Echelon concept  for general assembly systems



Echelon concept  for general assembly systems

echelon inventory
position



Convergent (assembly) systems

• Each item has at most one successor
• Constant flow times (flow time = lead time)
• I.i.d. demand per period
• Linear holding and penalty costs
• No lot sizing costs and constraints

• Echelon base stock policies are optimal
• Order such that echelon stock equals fixed level

• Base stock levels can be determined recursively

( )( ) ( ) { }0k k k kip ip h p h P I+ = + ≥ kiI Net stock of end-item k in 
system consisting of the 
subsystem with the i
shortest cumulative lead 
times

( )p i Predecessor of i when 
items are ordered 
according to increasing 
cumulative lead times



Divergent (distribution) systems

• Each item has at most one predecessor
• Constant flow times (flow time = lead time)
• I.i.d. demand per period
• Linear holding and penalty costs
• No lot sizing costs and constraints
• Relaxation of 

• Echelon base stock policies are optimal, optimal allocation functions determined 
implicitly using Lagrange multipliers

• Base stock levels can be determined recursively, under optimal policy

( ) 0ir t ≥

( )( ) ( ) { }0k k k kip ip h p h P I+ = + ≥
kiI Net stock of end-item k in 

system consisting of the 
subsystem with root node i



Computational issues

• Implicit allocation functions
• Multiple equations for a single variable, i.e. as many equations as end-items in the echelon of 

item, for which base stock level must be determined
• Implicit functions computationally intractable

• Multi-dimensional integrals involving pdf’s



Computational issues

• Implicit allocation functions
• Explicit allocation functions: linear allocation rules

• In case of a shortage, allocate this shortage according to fixed fractions among successors
• Numerical study revealed that linear allocation rules are close-to-optimal
• Linear allocation rules yield recursive optimality equations, too

• Multi-dimensional integrals involving pdf’s
• Recursive expressions for the non-stockout probabilities for end-items
• “Aggregation of random variables”
• Applying two-moment fits under assumption of gamma distributions for demand during lead 

times and for subsequently arising “aggregate” random variables 
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Finite horizon ruin probabilities

• Non-stockout probabilities P{Iki≥0} can be written as finite horizon ruin probabilities

• Expressions can be written recursively
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Recursive computations

• Define random variables Yi

• Theorem
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Two-moment recursion

• Fit mixture of Erlang distributions on E[Yi] and σ2(Yi)

• Compute P{Iki≥0} = Gi(ξ1,..., ξι) recursively
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Application of conditional random variable recursion

• Multi-echelon models
• Ruin probabilities
• Lost-sales model

• Approximation very accurate for gamma-distributed demand
• Fixed non-stockout probability policy outperforms all policies known to date and yields 

asymptotically optimal policy for high penalty costs and long lead times
• Queueing models

• Lindley’s integral equation over a finite horizon
• Vehicle routing with stochastic travel times
• Appointment scheduling
• Project networks with stochastic activity durations

• Problem related to the problem discussed here
• Similar optimality equations



General value networks

• Optimal policy only known for specific small structures and under specific item cost 
assumptions

• N-model
• Synchronized Base Stock policy enables analysis and optimization of general 

structures
• Allocate before ordering
• Synchronize orders based on constraints from earlier ordering decisions
• Derive a set of divergent structures from the network structure determined by {Li}and (aij)



General network and associated decision node structure



General value networks

• Optimal policy only known for specific small structures and under specific item cost 
assumptions

• N-model
• Synchronized Base Stock (SBS) policy enables analysis and optimization of general 

structures
• Allocate before ordering
• Synchronize orders based on constraints from earlier ordering decisions
• Derive a set of divergent structures from the network structure determined by {Li}and (aij)
• Optimize divergent systems base stock levels

• Ordering decisions follow from adding orders for an item from the divergent decision 
node structures

• SBS policies outperform rolling scheduling LP- and QP-based policies
• SBS policies enable to compute customer service from historical data on average 

inventory levels, showing empirical validity of the model for a great variety of value 
networks

• Simplified version of SBS has been used in the semiconductor supply chain to weekly 
release orders across the supply chain from silicon to consumer product

• Network-wide plan computed in a split second

For most policies applicable we 
proof that optimal policy satisfies 
Newsvendor fractiles for end-
items
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Open problems

• Lot sizing
• Lot-sizing affects synchronization principle, as lot-sizes cover demand over future periods
• Heuristic based on deriving nested review periods seems to preserve empirical validity 

regarding investment in inventory versus customer service
• Some toy problems have been analyzed as potential building block

• Finite capacity
• Only results for serial systems

• Complicated policy structure
• Empirical validity of model suggests that lead times effectively model capacity constraints
• But operational order release decisions should satisfy resource constraints

• Simulation-based optimization
• Proposed recursive two-moment approximation scheme deteriorates as number of echelons 

increase
• Monte-Carlo simulation can be used to solve the optimality equations



Thank you
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