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Notions of graph convergence and limits

Dense graphs: local (left-) convergence
Borgs-Chayes-L-Sós-Vesztergombi; Razborov

W: [0,1]2 [0,1], 

symmetric, measurable
L - Szegedy

Limit objects:    graphons

Extending graph theory to graphons
Connectivity, matchings, automorphisms,
extremal graphs,…



November 2021 3

Notions of graph convergence and limits

Bounded degree:     local convergence

Benjamini - Schramm

Limit objects: involution-invariant distributions on rooted graphs

All?
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Notions of graph convergence and limits

Bounded degree:     local-global convergence

Limit objects: graphings (bounded degree Borel-measurable
graphs with a measure-preserving property)

Hatami-L-Szegedy

Extending graph theory to graphings
Matchings, flows, expansion, edge-coloring,…

Bollobás - Riordan
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What about inbetween?

Limit of:     hypercubes?
incidence graphs of finite projective planes?
stars?
1-subdivisions of complete graphs?

Lp-convergence → Lp-graphon Borgs, Chayes, Cohn, Zhao

Scaled convergence → graphoning Frenkl

Shape convergence → s-graphon Kunszenti-Kovács, L, Szegedy

Action convergence → graphop Backhausz, Szegedy
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Common in limit structures

(Borel) sigma-algebra + random node + random edge

Random walk / Markov chain
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Basic setup

: standard Borel sigma-algebra (e.g. Borel sets of [0,1])

J:  its underlying set (J= )

M( ): set of finite signed measures on (Banach space)

μ*: flip coordinates in μ ϵ M( x )

Symmetric measure: μ= μ*

μ1(A)= μ(J x A), μ2(A)= μ(A x J): marginals of μ
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Markov chains, schemes and spaces

Markov chain: random variables (w0, w1, w2,…) such that
wi+1 depends only on wi

Markov kernel: (J, , (Pu)), is a (Borel) sigma-algebra on J,
uJ: Pu probability measure on , 

Pu(A) measurable function of u.

Markov space: (J, , ), is a (Borel) sigma-algebra on J,
 is a probability measure on 2, 1= 2.

( is symmetric  time reversible chain)
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Markov chains, schemes and spaces

Ergodic circulation:   = ( ) ( ) ( )u

A

A B P B d u

Markov kernel + starting distribution Markov chain

Markov kernel + stationary distribution Markov space

 =  =  = 
1 2( ) ( ) ( )u

J

X P X d uStationary distribution:

Markov space + node distribution s-graphon, graphop
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Markov spaces: examples

Graphons (bounded or unbounded) and graphings

Orthogonality spaces

Are Markov spaces rich enough to allow
nontrivial generalization of graph theory?
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Graphs and Markov spaces

Sampling and subgaph density

Flow theory

Random walks

Expanders and spectra

Cut distance, counting lemma

Regularity partitions
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Subgraph densities in (dense) graphs
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Sidorenko–Simonovits Conjecture:  
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Hom(F,G)={adjacency preserving maps V(F)→ V(G)}
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Subgraph densities in graphons
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orthogonality graph Hd

: uniform distribution

on orthogonal pairs

homomorphism of G into Hd



orthonormal representation

of the complement of G in Rd

Important example: orthogonality graph
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density? „random copy”?

C3:  prob. measure: trivial
density: nontrivial

C4:  trouble! C5:  nontrivial

Important example: orthogonality graph

homomorphism of G into Hd



orthonormal representation

of the complement of G in Rd
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( , ) 1 (  tree)t T G T =
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2 8
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Important example: orthogonality graph
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.

G has an orthonormal rep in d  in general position

G is (n-d)-connected

G contains no complete bipartite subgraph on d+1 nodes

L-Saks-Schrijver

any d vectors are 
linearly independent

Important example: orthogonality graph

_
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.

Important example: orthogonality graph

- map G→ d sequentially, each node uniform on the sphere

orthogonal to previous neighbors;

- show that distribution of this map is independent depends

absolutely continously on the order; 

- figure out Radon-Nikodym derivatives.

G has a homomorphism into Hd in general position

G contains no complete bipartite subgraph on d+1 nodes
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Subgraph measures in Markov spaces

No general notion of homomorphisms G → M

edge set <<<  edge measure 

Hom set <<<  homomorphism measure G on JV

Markov space: M=(J, , ), is a (Borel) sigma-algebra on J,
 is a symmetric probability measure on 2.

G=(V,E):  simple graph
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Axioms for subgraph measures

(i) Normalization: 1 2,K K
 =   = 

(ii) Decreasing:  marginal of G on SV is abs. continuous w.r.t. G[S]

(iii) Markovian: 
 ( )  ( )  ( )

, , no edge between \ and \

for almost all , | | |
G U W G U G WU W

U W V U W W U

z J z z z


 

  =   

U W
G:
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y: random point from 

x1,…,xk: independent Markov chain steps from y

k: joint distribution of (x1,…,xk)

k-loose: k absolutely continuous w.r.t. k

k-loose Markov spaces

2-loose
but not
3-loose

k-loose
for all k

1-loose
but not
2-loose
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(J,B,): k-loose Markov space. Then G is well defined for graphs

of girth  5 and degrees  k, and normalized, decreasing and 

Markovian.

Subgraph measures in Markov spaces

Two approaches:  generalizing sequential mapping

approximation by graphons
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Circulations

circulation: α ϵ M( x ), α1 = α2

−+ 

= 
( )( )

( ) ( )
j N ij N i

f ij f ji

3 4

4

15

5

Markov space: circulation   0

with (J x J) = 1

flow condition
Measure on sets

of edges

s-t flow: α ϵ M( x ), α1 - α2 = v·(s-t)
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Hoffman Circulation Theorem

For two measures , ( )

there exists a circulation such that

iff and ( ) ( ) for every .c c

M

X X X X X

  

     

        

A A
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X Xc

XXc

XcX
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Flow theory

Natural generalizations of:

- Max-Flow-Min-Cut;

- decomposition of flows into paths;

- minimum cost flow/circulation theorem;

- integrality of potentials;

- multicommodity flows.
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Multicommodity flows (finite case)

s
t

σst: demand s,tV

ij: capacity ijE

Want:  {fst: s,tV}

fst: s-t flow of value σst 1.

,
( )st st ijs t

f ij ij E    

feasible multicommodity flow

undirected case: σst= σts

ij = ji
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Multicommodity flows (finite case)

s
t

, ,
.

Let ( , ) and , : . There exists a feasible 

multicommodity flow ( : , ) iff for every metric
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Iri, Shahroki-Matula
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Multicommodity flows (measure case)

Multicommodity flow: 

- symmetric measure („demand”) σ ϵ M( x );

- symmetric measure („capacity”)  ϵ M( x );

- family {fst: s,t ϵ J} of s-t flows of value 1 

2multicommodity flow ( :  , ) s.t.

( ) ( , ) ( ).

feaW sibleant  : st

xy

J J

F f s t J S

f S d x y S


=   

  

A
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 Let , ( ), symmetric, , 0. 

There exists a feasible multicommodity flow

for every bounded measurable metric on .

"Conjecture".

J J J J

g d

J

g d

M

g

 

  





  

  

A A

Multicommodity flows (measure case)



November 2021 30

Metrical linear functionals
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Metrical linear functionals

2

For every metrical : ( ) and every ( ), 0,

there is a bounded semimetric :  such that

( ) 0 .
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Let , ( ), symmetric. 

0 there is a multicommodity flow

for demands with ( ) <

( ) ( ) for every metrical .

F tv

M

F

+
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A A

D D D
overload

Multicommodity flows (measure case)



Thank you, this is all for today!
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Important example: orthogonality graph

d

ii V v 

| | 1iu• =
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0

orthonormal representation:


