Graph limits meet Markov chains

László Lovász

Rényi Institute, Budapest Eötvös Loránd University, Budapest

1

Notions of graph convergence and limits

Dense graphs: local (left-) convergence

Borgs-Chayes-L-Sós-Vesztergombi; Razborov

Limit objects: graphons

 $W: [0,1]^2 \rightarrow [0,1],$ symmetric, measurable

Extending graph theory to graphons Connectivity, matchings, automorphisms, extremal graphs,...

Bounded degree: local convergence

Limit objects: involution-invariant distributions on rooted graphs

Benjamini - Schramm

All?

Notions of graph convergence and limits

Bounded degree: local-global convergence

Bollobás - Riordan

Limit objects:

graphings (bounded degree Borel-measurable graphs with a measure-preserving property)

Hatami-L-Szegedy

Extending graph theory to graphings Matchings, flows, expansion, edge-coloring,...

What about inbetween?

Limit of: hypercubes? incidence graphs of finite projective planes? stars? 1-subdivisions of complete graphs? Borgs, Chayes, Cohn, Zhao *L^p*-convergence $\rightarrow L^{p}$ -graphon **Frenkl** Scaled convergence \rightarrow graphoning Kunszenti-Kovács, L, Szegedy Shape convergence \rightarrow s-graphon Action convergence \rightarrow graphop Backhausz, Szegedy

Common in limit structures

(Borel) sigma-algebra + random node + random edge

Random walk / Markov chain

Basic setup

 \mathcal{A} : standard Borel sigma-algebra (e.g. Borel sets of [0,1]) J: its underlying set (J= $\cup \mathcal{A}$)

 $M(\mathcal{A})$: set of finite signed measures on \mathcal{A} (Banach space)

 μ^* : flip coordinates in $\mu \in M(\mathcal{A} \times \mathcal{A})$

Symmetric measure: $\mu = \mu^*$

 $\mu^1(A) = \mu(J \times A), \ \mu^2(A) = \mu(A \times J)$: marginals of μ

Markov chain: random variables (w^0 , w^1 , w^2 ,...) such that w^{i+1} depends only on w^i

Markov kernel: $(J, \mathcal{A}, (P_u)), \mathcal{A}$ is a (Borel) sigma-algebra on J, $\forall u \in J: P_u$ probability measure on $\mathcal{A},$ $P_u(\mathcal{A})$ measurable function of u.

Markov space: $(J, \mathcal{A}, \eta), \mathcal{A}$ is a (Borel) sigma-algebra on J, η is a probability measure on $\mathcal{A}^2, \eta^1 = \eta^2$. $(\eta \text{ is symmetric} \Leftrightarrow \text{ time reversible chain})$ Markov kernel + starting distribution \Leftrightarrow Markov chain

Markov kernel + stationary distribution \Leftrightarrow Markov space

Stationary distribution:
$$\pi(X) = \int_{J} P_u(X) \ d\pi(u) = \eta^1 = \eta^2$$

Ergodic circulation: $\eta(A \times B) = \int_{A} P_u(B) \ d\pi(u)$

Markov space + node distribution \Leftrightarrow s-graphon, graphop

Graphons (bounded or unbounded) and graphings

Orthogonality spaces

Are Markov spaces rich enough to allow nontrivial generalization of graph theory?

- Sampling and subgaph density
- Flow theory
- Random walks
- **Expanders and spectra**
- Cut distance, counting lemma
- Regularity partitions

Hom(*F*,*G*)={adjacency preserving maps $V(F) \rightarrow V(G)$ }

$$\frac{t(F,G)}{|V(G)|^{|V(F)|}} = P(\text{random } V(F) \rightarrow V(G) \text{ preserves edges})$$

$$t^*(F,G) = \frac{t(F,G)}{t(K_2,G)^{|E(F)|}}$$

Sidorenko–Simonovits Conjecture: *F* bipartite $\Rightarrow t^*(F,G) \ge 1 \quad (\forall G)$

Subgraph densities in graphons

Normalize:
$$t(K_2, W) = \int_{[0,1]^2} W(x, y) \, dx \, dy = 1 \quad \forall x$$

 $t^*(F, W) = t(F, W) = \int_{[0,1]^{V(F)}} \prod_{ij \in E(F)} W(x_i, x_j) \, dx$

 $W^F(x) = \prod_{ij \in E(F)} W(x_i, x_j)$: density function of a measure

on homomorphisms $F \rightarrow W$.

Important example: orthogonality graph

orthogonality graph H_d

 η : uniform distribution

on orthogonal pairs

homomorphism of G into H_d

 \leftrightarrow

orthonormal representation

of the complement of G in \mathbb{R}^d

Important example: orthogonality graph

homomorphism of G into H_d

\leftrightarrow

orthonormal representation

of the complement of G in \mathbb{R}^d

density? "random copy"?

 C_3 : prob. measure: trivial C_4 : trouble! C_5 : nontrivial density: nontrivial

Important example: orthogonality graph

$$t^{*}(T,G) = 1 \quad (T \text{ tree})$$

$$t^{*}(K_{3},H_{3}) = \frac{2}{\pi}, \qquad t^{*}(K_{3},H_{4}) = \frac{\pi}{4}, \qquad t^{*}(K_{3},H_{5}) = \frac{8}{3\pi}, \dots$$

$$t^{*}(C_{4},H_{3}) = \infty, \qquad t^{*}(C_{4},H_{4}) = \frac{2}{3\pi^{2}}, \dots$$

G has an orthonormal rep in \mathbb{R}^d in general position

 \Leftrightarrow G is (*n*-d)-connected

 $\Leftrightarrow \overline{G}$ contains no complete bipartite subgraph on d+1 nodes

any *d* vectors are linearly independent

L-Saks-Schrijver

G has a homomorphism into H_d in general position

 \Leftrightarrow *G* contains no complete bipartite subgraph on *d*+1 nodes

- map $G \rightarrow \mathbb{R}^d$ sequentially, each node uniform on the sphere orthogonal to previous neighbors;
- show that distribution of this map is independent depends absolutely continously on the order;
- figure out Radon-Nikodym derivatives.

Subgraph measures in Markov spaces

Markov space: $M=(J, A, \eta), A$ is a (Borel) sigma-algebra on J, η is a symmetric probability measure on A^2 .

G=(V,E): simple graph

No general notion of homomorphisms $G \rightarrow M$ edge set <<< edge measure η Hom set <<< homomorphism measure η^G on J^V

(i) Normalization:
$$\eta^{\kappa_1} = \pi, \eta^{\kappa_2} = \eta$$

(ii) Decreasing: marginal of η^{G} on $S \subseteq V$ is abs. continuous w.r.t. $\eta^{G[S]}$

(iii) Markovian: $U, W \subseteq V$, no edge between $U \setminus W$ and $W \setminus U \Rightarrow$ for almost all $z \in J^{U \cap W}$, $\left(\eta^{G[U \cup W]} \mid z\right) = \left(\eta^{G[U]} \mid z\right) \times \left(\eta^{G[W]} \mid z\right)$

y: random point from π

 x_1, \dots, x_k : independent Markov chain steps from y

 σ_k : joint distribution of (x_1, \dots, x_k)

k-loose: σ_k absolutely continuous w.r.t. π^k

 (J,\mathcal{B},η) : *k*-loose Markov space. Then η^{G} is well defined for graphs

of girth \geq 5 and degrees \leq *k*, and normalized, decreasing and

Markovian.

Two approaches: generalizing sequential mapping approximation by graphons

Circulations

For two measures
$$\varphi, \psi \in M(A \times A)$$

there exists a circulation α such that $\varphi \leq \alpha \leq \psi$
iff $\varphi \leq \psi$ and $\varphi(X \times X^c) \leq \psi(X^c \times X)$ for every $X \in A$.

Natural generalizations of:

- Max-Flow-Min-Cut;
- decomposition of flows into paths;
- minimum cost flow/circulation theorem;
- integrality of potentials;
- multicommodity flows.

Multicommodity flows (finite case)

$$\sigma_{st}$$
: demand $\forall s, t \in V$

$$\psi_{ij}$$
: capacity $\forall ij \in E$

Want:
$$\{f_{st}: s, t \in V\}$$

$$f_{st}$$
: *s*-*t* flow of value σ_{st} 1.

$$\sum_{s,t} \sigma_{st} f_{st}(ij) \leq \psi_{ij} \quad \forall ij \in E$$

feasible multicommodity flow

undirected case:
$$\sigma_{st} = \sigma_{ts}$$

 $\psi_{ij} = \psi_{ji}$

Multicommodity flows (finite case)

Let G = (V, E) and $\sigma, \psi \colon E \to \Box_+$. There exists a feasible multicommodity flow $(f_{st} \colon s, t \in V)$ iff for every metric d on V $\sum_{s,t} \sigma_{st} d(s,t) \leq \sum_{s,t} \psi_{st} d(s,t)$.

Iri, Shahroki-Matula

Multicommodity flow:

- symmetric measure ("demand") $\sigma \in M(\mathcal{A} \times \mathcal{A})$;
- symmetric measure ("capacity") $\psi \in M(\mathcal{A} \times \mathcal{A})$;
- family $\{f_{st}: s, t \in J\}$ of *s*-*t* flows of value 1

Want: feasible multicommodity flow $F = (f_{st} : s, t \in J)$ s.t. $\forall S \in A^2$ $\int_{J \times J} f_{xy}(S) d\sigma(x, y) \leq \psi(S).$ "Conjecture". Let $\sigma, \psi \in M(A \times A)$, symmetric, $\sigma, \psi \ge 0$. There exists a feasible multicommodity flow

$$\Leftrightarrow \int_{J\times J} g \, d\sigma \leq \int_{J\times J} g \, d\psi$$

for every bounded measurable metric g on J.

D bounded linear functional on $M(A \times A)$ is metrical: (a) $D(\mu) = 0 \forall \mu$ concentrated on the diagonal $\Delta = \{(x, x)\};$ (b) $D(\mu) = D(\mu^*) \forall \mu;$ (c) $D(\kappa^{12}) + D(\kappa^{23}) \ge D(\kappa^{13}) \forall \kappa \in M(A^3), \kappa \ge 0.$

$$\kappa^{12}(A \times B) = \kappa(A \times B \times J),$$

$$\kappa^{23}(A \times B) = \kappa(J \times A \times B),$$

$$\kappa^{13}(A \times B) = \kappa(A \times J \times B).$$

Metrical linear functionals

Example: $D(\phi) = \phi(A \times A^c) + \phi(A^c \times A)$

Example: For a bounded semimetric $g: J \times J \rightarrow \Box_{\perp}$, let $D(\phi) = \int g d\phi$ Conjecture: True for graphons, graphings, ... $M(A \times A), \psi \geq 0,$ For every metrical D: ML such that there **σαφ ∀0**≤φ≤ψ. $D(\phi) =$

Multicommodity flows (measure case)

Thank you, this is all for today!

