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Consider a homogeneous balanced system of linear equations:

a11x1+ · · ·+ a1kxk = 0
...

am1x1+ · · ·+ amkxk = 0

(?)

Balanced: ai1 + · · ·+ aik = 0 for all i .

Coefficients aij ∈ Fq. Variables xj ∈ Fn
q are vectors. xj = (xj1, . . . , xjn)

Trivial solutions: x1 = · · · = xk .

Problem
How large must S ⊆ Fn

q be to ensure a non-trivial solution x = (x1, . . . , xk)

with x1, . . . , xk ∈ S?
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Cap sets

x1 − 2x2 + x3 = 0 x1

x2

x3

A cap set: subset S ⊆ Fn
3 containing no non-trivial solution to x1 − 2x2 + x3 = 0.

Equivalently: no (non-trivial) 3-term arithmetic progression (3AP).

Cap set problem
What is the asymptotic growth of maximum size of a cap set in Fn

3?
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Online Encyclopedia of Integer Sequences: A090245

n 1 2 3 4 5 6 7
max cap size 2 4 9 20 45 112 236 – 291

3n 3 9 27 81 243 729 2187

f (n) = O(3n
n ) [Meshulam, 1995] O( 3n

n1+ε ) [Bateman-Katz, 2012]

f (n) = Ω(2.217n) [Edel, 2004]
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Motivation

Arithmetic progressions
The cap set problem is a toy model for understanding arithmetic progressions in the integers

Terence Tao: “Perhaps my favourite open question is the problem on the
maximal size of a cap set”

Fast matrix multiplication
Possible schemes for fast matrix multiplication rely on large cap sets
(e.g. Coppersmith-Winograd conjecture)

Related to other problems in extremal combinatorics
e.g. Erdős-Szemerédi sunflower conjecture.



Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]
For every dimension n we have f (n) ≤ 2.756n.

Consequences
Erdős Szemerédi sunflower conjecture is true.
Coppersmith-Winograd conjecture is false
(not viable path for fast matrix multiplication)

Proof builds upon work of Croot-Lev-Pach for 3APs in (Z/4Z)n.
CLP lemma.
Proof reformulated by Tao in terms of slice rank of tensors.
Slice rank method.



Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]
For every dimension n we have f (n) ≤ 2.756n.

Consequences
Erdős Szemerédi sunflower conjecture is true.
Coppersmith-Winograd conjecture is false
(not viable path for fast matrix multiplication)

Proof builds upon work of Croot-Lev-Pach for 3APs in (Z/4Z)n.
CLP lemma.
Proof reformulated by Tao in terms of slice rank of tensors.
Slice rank method.



Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]
For every dimension n we have f (n) ≤ 2.756n.

Consequences
Erdős Szemerédi sunflower conjecture is true.
Coppersmith-Winograd conjecture is false
(not viable path for fast matrix multiplication)

Proof builds upon work of Croot-Lev-Pach for 3APs in (Z/4Z)n.
CLP lemma.
Proof reformulated by Tao in terms of slice rank of tensors.
Slice rank method.



Slice rank method

a11x1+ · · ·+ a1kxk = 0
...

am1x1+ · · ·+ amkxk = 0

(?)

where aij ∈ Fq. Variable vectors xj ∈ Fn
q.

Theorem
Suppose that S ⊆ Fn

q contains no nontrivial solutions to (?).
If k ≥ 2m + 1, then |S | ≤ q(1−δ)n for some δ > 0.

Note: No (non-trivial) bound for k ≤ 2m.
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Theorem
Suppose that S ⊆ Fn

q contains no nontrivial solutions to (?). If k ≥ 2m + 1 then there is a
δ > 0 such that |S | ≤ q(1−δ)n.

Note: No (non-trivial) bound for k ≤ 2m.

Open problem 4APs
Let p ≥ 5 prime. Is there a δ > 0 such that the following holds.
If S ⊆ Fn

p has no (non-trivial) solutions to

x1 − 2x2 + x3 = 0
x2 − 2x3 + x4 = 0

(?)

then |S | ≤ p(1−δ)n ?



Non-degenerate solutions

Sometimes non-trivial is still too degenerate!

A solution (x1, . . . , xk) is all-different if all xj are distinct.

Erdős-Ginzburg-Ziv
Max size of S ⊆ Fn

p without all-different solution to

x1 + · · ·+ xp = 0.

Slice rank method does not work (for p > 3)!
However, bounds O(p(1−δ)n) obtained by modifying/augmenting the slice rank method
Naslund (2020), Fox-Sauermann (2018), Sauermann (2021)
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For which systems is there a δ > 0 such that

|S | = O(q(1−δ)n) if S has no all-different solution?

Proved for several systems.
Mimura-Tokushige: 3 papers, several explicit systems and some families of systems.
van Dobben de Bruyn-G.: coefficient matrix has ‘many’ linearly dependent columns.

Sauermann: all m ×m minors nonzero and k ≥ 3m.
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generic solutions

A solution to (?) is generic if it only satisfies affine relations implied by (?).

The affine rank of {x1, . . . , xk} is max. number of affinely independent xj .

generic ⇐⇒ affine rank k −m.

Problem
How large must S ⊆ Fn

q be to ensure a generic solution x = (x1, . . . , xk)

with x1, . . . , xk ∈ S?

Note: to use the slice-rank method, we certainly need k ≥ 2m + 1 and similarly for every
implied system.
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We call (?) tame if every implied system with m′ equalities uses k ′ ≥ 2m′ + 1 variables.

Theorem
Suppose that (?) is tame. Consider subsets S ⊆ Fn

q.

There is a δ > 0 such that |S | = Ω(q(1−δ)n) implies generic solutions to (?) in S
(for n large enough).



Proof sketch 1/5 (setup)

Restrict to the ‘worst’ case: k = 2m + 1.
Goal: Show: |S | = Ω(q(1−δ)n)) implies generic solutions in S

generic ≡ affine rank m + 1
Induction on r :
Assume: we get solutions of affine rank r < m + 1, but not r + 1.
Goal: obtain a contradiction.

Important tool is super saturation.

Proposition (Super saturation)
Let 0 < δ′ < δ. There is a constant c > 0 such that the following holds.

Suppose: |S | = Ω(q(1−δ)n) implies solutions of affine rank ≥ r (for n large)
Then: |S | = Ω(q(1−δ

′)n) implies Ω(qnr−cδ
′n) solutions of affine rank ≥ r



Proof sketch 2/5 (polynomials)

The solutions to (?) can be modeled by a low-degree polynomial.
Let f : S × · · · × S︸ ︷︷ ︸

k times

→ {0, 1} ⊆ Fq be the indicator function of the solution set.

Then

f (x1, . . . , xk) =
m∏
i=1

n∏
`=1

[
1− (ai1x1` + · · ·+ aikxk`)

q−1] ,
a polynomial of degree mn(q − 1). xj = (xj1, . . . , xjn)

Note: deg(f ) = m
2m+1 ·maximum possible degree (recall that k = 2m + 1).



Proof sketch 3/5 (Using tameness)

Tameness of (?) implies (by matroid union theorem):

If (x1, . . . , x2m+1) is a solution of affine rank r , there exist disjoint I , J ⊆ {1, . . . , 2m + 1} of
size r such that {xi : i ∈ I} and {xi : i ∈ J} are affinely independent.

Assume:
all solutions have affine rank r

can always take
I = {1, . . . , r} and J = {r + 1, . . . , 2r}.

Rename:
x = (x1, . . . , xr )

y = (xr+1, . . . , x2r )

z = (x2r+1, . . . , x2m+1) x

y

z



Proof sketch 4/5 (constructing low rank matrix, CLP lemma)

Let g : S2m+1−2r → Fq be random function such that

∑
z∈S

g(z)zα = 0 for all monomials zα of degree |α| ≤ (q − 1)n · (2m + 1− 2r) · m

2m + 1

Compress f to a function M : S2r → Fq:

M(x , y) =
∑
z

f (x , y , z)g(z)

x

y

z
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Let g : S2m+1−2r → Fq be random function such that

∑
z∈S

g(z)zα = 0 for all monomials zα of degree |α| ≤ (q − 1)n · (2m + 1− 2r) · m

2m + 1

Compress f to a function M : S2r → Fq:

M(x , y) =
∑
z

f (x , y , z)g(z)

Then M has low degree: deg(M) ≤ (q − 1)n · 2r · m
2m+1 .

Can view M as a |S |r × |S |r -matrix.
Croot-Lev-Pach lemma: M has small rank. x

y

z



Proof sketch 5/5 (structure solution set implies high rank)

Matrix M satisfies:
Bounded number of non-zeroes in each row/column.
Total number of non-zeroes is Ω(qnr−εn) (by supersaturation).

Conclusion: M has high rank (Ω(qnr−εn)). Contradiction!

x

y

z

f =

x ∈ S r

y ∈ S r = M



Thank you!



CLP lemma

CLP lemma
Let f ∈ Fq[x1, . . . , xn, y1, . . . , yn] be a polynomial of degree d .
Then the qn × qn-matrix

Ma,b = f (a1, . . . , an, b1, . . . , bn)

has rank ≤ 2× the number of monomials xα, where
α ∈ {0, . . . , q − 1}n and |α| := α1 + · · ·+ αn ≤ d/2.

Proof.
Write

f =
∑
|α|≤d/2

xαfα(y) +
∑
|β|≤d/2

yβgβ(x)

for certain fα and gβ .
Each term xαfα(y) and each term yβgβ(x) corresponds to a rank 1 matrix
(outer product of two vectors).
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