Excluding affine configurations over a finite field

Abel Prize Laureates Lectures

Dion Gijswijt

Delft University of Technology

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$

 (\star)

Balanced: $a_{i1} + \cdots + a_{ik} = 0$ for all *i*.

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$

Balanced: $a_{i1} + \cdots + a_{ik} = 0$ for all *i*. Coefficients $a_{ij} \in \mathbb{F}_q$. Variables $x_j \in \mathbb{F}_q^n$ are vectors.

$$x_j = (x_{j1}, \ldots, x_{jn})$$

 (\star)

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$

Balanced: $a_{i1} + \cdots + a_{ik} = 0$ for all *i*. Coefficients $a_{ij} \in \mathbb{F}_q$. Variables $x_j \in \mathbb{F}_q^n$ are vectors. Trivial solutions: $x_1 = \cdots = x_k$.

 $x_j = (x_{j1}, \ldots, x_{jn})$

 (\star)

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\vdots \qquad (\star)$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$
Balanced: $a_{i1} + \dots + a_{ik} = 0$ for all i .
Coefficients $a_{ij} \in \mathbb{F}_q$. Variables $x_j \in \mathbb{F}_q^n$ are vectors.
$$x_j = (x_{j1}, \dots, x_{jn})$$
Trivial solutions: $x_1 = \dots = x_k$.

Problem

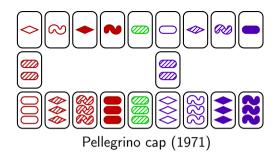
How large must $S \subseteq \mathbb{F}_q^n$ be to ensure a **non-trivial** solution $x = (x_1, \ldots, x_k)$ with $x_1, \ldots, x_k \in S$?

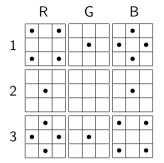


A cap set: subset $S \subseteq \mathbb{F}_3^n$ containing no non-trivial solution to $x_1 - 2x_2 + x_3 = 0$. Equivalently: no (non-trivial) 3-term arithmetic progression (3AP).

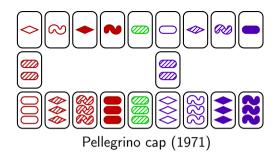
Cap set problem

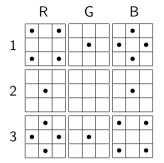
What is the asymptotic growth of maximum size of a cap set in \mathbb{F}_3^n ?





Online Encyclope	dia of Integer	Seq	uen	ces:	A090)245			
	п	1	2	3	4	5	6	7	
	max cap size	2	4	9	20	45	112	236 – 291	
	3 ⁿ	3	9	27	81	243	729	2187	

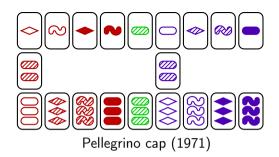


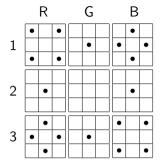


Online Encyclopedia of Integer Sequences: A090245										
	п	1	2	3	4	5	6	7		
	max cap size	2	4	9	20	45	112	236 – 291		
	3"	3	9	27	81	243	729	2187		

• $f(n) = O(\frac{3^n}{n})$ [Meshulam, 1995]

 $O(\frac{3^n}{n^{1+\epsilon}})$ [Bateman-Katz, 2012]





Online Encyclopedia of Integer Sequences: A090245									
	п	1	2	3	4	5	6	7	
	max cap size	2	4	9	20	45	112	236 – 291	
	3 ⁿ	3	9	27	81	243	729	2187	

• $f(n) = O(\frac{3^n}{n})$ [Meshulam, 1995]

 $O(\frac{3^n}{n^{1+\epsilon}})$ [Bateman-Katz, 2012]

• $f(n) = \Omega(2.217^n)$ [Edel, 2004]

Motivation

Arithmetic progressions

The cap set problem is a toy model for understanding arithmetic progressions in the integers

Terence Tao: "Perhaps my favourite open question is the problem on the maximal size of a cap set"

Fast matrix multiplication

Possible schemes for fast matrix multiplication rely on large cap sets (e.g. Coppersmith-Winograd conjecture)

Related to other problems in extremal combinatorics

e.g. Erdős-Szemerédi sunflower conjecture.

Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]

For every dimension *n* we have $f(n) \leq 2.756^n$.

Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]

For every dimension *n* we have $f(n) \leq 2.756^n$.

Consequences

- Erdős Szemerédi sunflower conjecture is true.
- Coppersmith-Winograd conjecture is false (not viable path for fast matrix multiplication)

Solution of the cap set problem

Theorem (2016) [Ellenberg-G.]

For every dimension *n* we have $f(n) \leq 2.756^n$.

Consequences

- Erdős Szemerédi sunflower conjecture is true.
- Coppersmith-Winograd conjecture is false (not viable path for fast matrix multiplication)
- Proof builds upon work of Croot-Lev-Pach for 3APs in $(\mathbb{Z}/4\mathbb{Z})^n$. CLP lemma.
- Proof reformulated by Tao in terms of slice rank of tensors. Slice rank method.

Slice rank method

$$a_{11}x_1+\dots+a_{1k}x_k=0$$

 \vdots
 $a_{m1}x_1+\dots+a_{mk}x_k=0$
where $a_{ij}\in\mathbb{F}_q.$ Variable vectors $x_j\in\mathbb{F}_q^n.$

(*)

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mk}x_k = 0$$

 (\star)

where $a_{ij} \in \mathbb{F}_q$. Variable vectors $x_j \in \mathbb{F}_q^n$.

Theorem

Suppose that $S \subseteq \mathbb{F}_q^n$ contains no nontrivial solutions to (*). If $k \ge 2m + 1$, then $|S| \le q^{(1-\delta)n}$ for some $\delta > 0$.

Note: No (non-trivial) bound for $k \leq 2m$.

Theorem

Suppose that $S \subseteq \mathbb{F}_q^n$ contains no nontrivial solutions to (*). If $k \ge 2m + 1$ then there is a $\delta > 0$ such that $|S| \le q^{(1-\delta)n}$.

Note: No (non-trivial) bound for $k \leq 2m$.

Open problem 4APs

Let $p \ge 5$ prime. Is there a $\delta > 0$ such that the following holds. If $S \subseteq \mathbb{F}_p^n$ has no (non-trivial) solutions to

 $\begin{aligned} x_1 - 2x_2 + x_3 &= 0 \\ x_2 - 2x_3 + x_4 &= 0 \end{aligned}$

 (\star)

then $|S| \leq p^{(1-\delta)n}$?

A solution (x_1, \ldots, x_k) is all-different if all x_j are distinct.

A solution (x_1, \ldots, x_k) is all-different if all x_j are distinct.

Erdős-Ginzburg-Ziv Max size of $S \subseteq \mathbb{F}_p^n$ without all-different solution to

 $x_1+\cdots+x_p=0.$

A solution (x_1, \ldots, x_k) is all-different if all x_j are distinct.

Erdős-Ginzburg-Ziv Max size of $S \subseteq \mathbb{F}_p^n$ without all-different solution to

$$x_1+\cdots+x_p=0.$$

Slice rank method does not work (for p > 3)! However, bounds $O(p^{(1-\delta)n})$ obtained by modifying/augmenting the slice rank method Naslund (2020), Fox-Sauermann (2018), Sauermann (2021)

Proved for several systems.

• Mimura-Tokushige: 3 papers, several explicit systems and some families of systems.

Proved for several systems.

- Mimura-Tokushige: 3 papers, several explicit systems and some families of systems.
- van Dobben de Bruyn-G.: coefficient matrix has 'many' linearly dependent columns.

Proved for several systems.

- Mimura-Tokushige: 3 papers, several explicit systems and some families of systems.
- van Dobben de Bruyn-G.: coefficient matrix has 'many' linearly dependent columns.

• Sauermann: all $m \times m$ minors nonzero and $k \ge 3m$.

The affine rank of $\{x_1, \ldots, x_k\}$ is max. number of affinely independent x_j . generic \iff affine rank k - m.

The affine rank of $\{x_1, \ldots, x_k\}$ is max. number of affinely independent x_j . generic \iff affine rank k - m.

Problem

How large must $S \subseteq \mathbb{F}_q^n$ be to ensure a **generic** solution $x = (x_1, \ldots, x_k)$ with $x_1, \ldots, x_k \in S$?

The affine rank of $\{x_1, \ldots, x_k\}$ is max. number of affinely independent x_j . generic \iff affine rank k - m.

Problem

How large must $S \subseteq \mathbb{F}_q^n$ be to ensure a **generic** solution $x = (x_1, \ldots, x_k)$ with $x_1, \ldots, x_k \in S$?

Note: to use the slice-rank method, we certainly need $k \ge 2m + 1$ and similarly for every implied system.

We call (*) tame if every implied system with m' equalities uses $k' \ge 2m' + 1$ variables.

Theorem

Suppose that (\star) is tame. Consider subsets $S \subseteq \mathbb{F}_q^n$. There is a $\delta > 0$ such that $|S| = \Omega(q^{(1-\delta)n})$ implies generic solutions to (\star) in S (for n large enough).

Proof sketch 1/5 (setup)

• Restrict to the 'worst' case: k = 2m + 1. Goal: Show: $|S| = \Omega(q^{(1-\delta)n})$ implies generic solutions in S generic \equiv affine rank m + 1

• Induction on *r*:

Assume: we get solutions of affine rank r < m + 1, but not r + 1. Goal: obtain a contradiction.

Important tool is super saturation.

Proposition (Super saturation)

Let $0 < \delta' < \delta$. There is a constant c > 0 such that the following holds. Suppose: $|S| = \Omega(q^{(1-\delta)n})$ implies solutions of affine rank $\ge r$ (for n large) Then: $|S| = \Omega(q^{(1-\delta')n})$ implies $\Omega(q^{nr-c\delta'n})$ solutions of affine rank $\ge r$

Proof sketch 2/5 (polynomials)

The solutions to (*) can be modeled by a low-degree polynomial. Let $f: \underbrace{S \times \cdots \times S}_{k \text{ times}} \to \{0, 1\} \subseteq \mathbb{F}_q$ be the indicator function of the solution set.

Then

$$f(x_1, \ldots, x_k) = \prod_{i=1}^m \prod_{\ell=1}^n \left[1 - (a_{i1}x_{1\ell} + \cdots + a_{ik}x_{k\ell})^{q-1}
ight],$$

a polynomial of degree mn(q-1). $x_j = (x_{j1}, \ldots, x_{jn})$

Proof sketch 3/5 (Using tameness)

Tameness of (\star) implies (by matroid union theorem):

If (x_1, \ldots, x_{2m+1}) is a solution of affine rank r, there exist disjoint $I, J \subseteq \{1, \ldots, 2m+1\}$ of size r such that $\{x_i : i \in I\}$ and $\{x_i : i \in J\}$ are affinely independent.

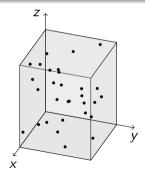
Assume:

- all solutions have affine rank r
- can always take

$$I = \{1, \dots, r\}$$
 and $J = \{r + 1, \dots, 2r\}.$

Rename:

- $x = (x_1, ..., x_r)$
- $y = (x_{r+1}, \ldots, x_{2r})$
- $z = (x_{2r+1}, \dots, x_{2m+1})$



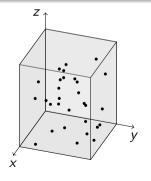
Proof sketch 4/5 (constructing low rank matrix, CLP lemma)

Let $g:S^{2m+1-2r} \to \mathbb{F}_q$ be random function such that

$$\sum_{z\in S} g(z)z^lpha = 0 ~~ ext{ for all monomials } z^lpha ~ ext{ of degree } |lpha| \leq (q-1)n\cdot(2m+1-2r)\cdotrac{m}{2m+1}$$

Compress f to a function $M: S^{2r} \to \mathbb{F}_q$:

$$M(x,y) = \sum_{z} f(x,y,z)g(z)$$



Proof sketch 4/5 (constructing low rank matrix, CLP lemma)

Let $g: S^{2m+1-2r} \to \mathbb{F}_q$ be random function such that

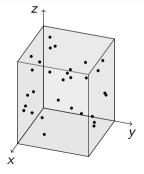
$$\sum_{z\in S} g(z)z^lpha = 0 ~~ ext{ for all monomials } z^lpha ~ ext{ of degree } |lpha| \leq (q-1)n\cdot(2m+1-2r)\cdotrac{m}{2m+1}$$

Compress f to a function $M: S^{2r} \to \mathbb{F}_q$:

$$M(x,y) = \sum_{z} f(x,y,z)g(z)$$

Then *M* has low degree: $deg(M) \le (q-1)n \cdot 2r \cdot \frac{m}{2m+1}$.

Can view M as a $|S|^r \times |S|^r$ -matrix. Croot-Lev-Pach lemma: M has small rank.

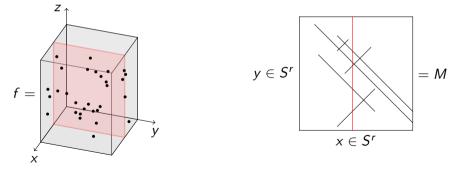


Proof sketch 5/5 (structure solution set implies high rank)

Matrix M satisfies:

- Bounded number of non-zeroes in each row/column.
- Total number of non-zeroes is $\Omega(q^{nr-\epsilon n})$ (by supersaturation).

Conclusion: *M* has high rank $(\Omega(q^{nr-\epsilon n}))$. Contradiction!



Thank you!

CLP lemma

CLP lemma

Let $f \in \mathbb{F}_q[x_1, \ldots, x_n, y_1, \ldots, y_n]$ be a polynomial of degree d. Then the $q^n \times q^n$ -matrix

$$M_{a,b} = f(a_1,\ldots,a_n,b_1,\ldots,b_n)$$

has rank $\leq 2 \times$ the number of monomials x^{α} , where $\alpha \in \{0, \ldots, q-1\}^n$ and $|\alpha| := \alpha_1 + \cdots + \alpha_n \leq d/2$.

Proof.

Write

$$f = \sum_{|lpha| \leq d/2} x^lpha f_lpha(y) + \sum_{|eta| \leq d/2} y^eta g_eta(x)$$

for certain f_{α} and g_{β} . Each term $x^{\alpha}f_{\alpha}(y)$ and each term $y^{\beta}g_{\beta}(x)$ corresponds to a rank 1 matrix (outer product of two vectors).