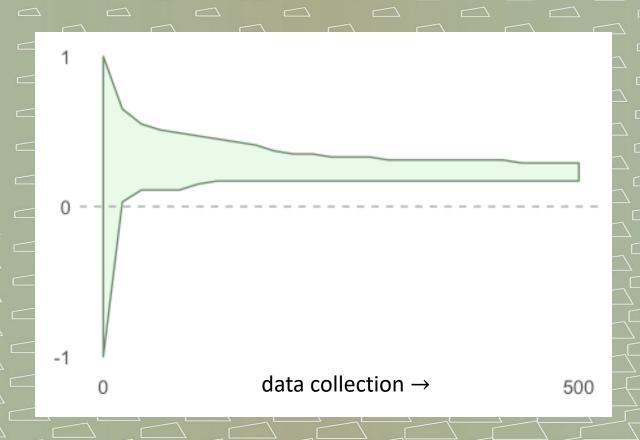
Anytime-valid testing and confidence intervals in contingency tables and beyond

Rosanne J. Turner and Peter Grünwald

A/B Testing Worksop 2022

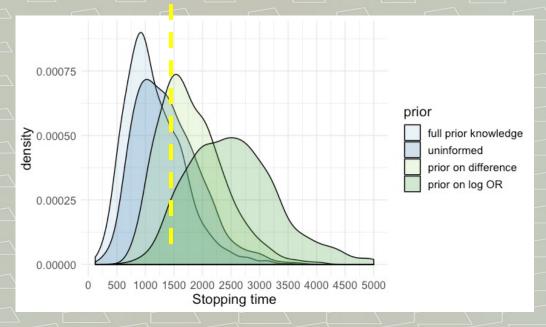
Goal: tests that can be used under optional stopping (sequential research), with a notion of effect size



Example: SWEPIS study on stillbirth

- Comparing perinatal death in labour induction at 41 or 42 weeks
- Stopped after ±1380 births in each group: 6 perinatal deaths in 42 weeks group
- Sequential test with balanced design: would often have stopped earlier

Simulated stopping times with and without using knowledge from previous studies in sequential test*



Flexible, sequential setting

- data come in a stream of data blocks j = 1, 2, ...
- each block has $n = n_a + n_b$ observations
- observations seen up to and including block j:

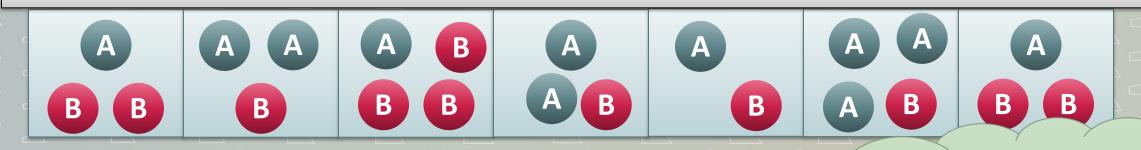
$$y_a^{(j)} = \left(y_{1,a}, \dots, y_{j \mid n_a, a}\right)$$
 and $y_b^{(j)} = \left(y_{1,b}, \dots, y_{j \mid n_b, b}\right)$

Flexible, sequential setting

- data come in a stream of data blocks j = 1, 2, ...
- each block has $n = n_a + n_b$ observations
- observations seen up to and including block *j*:

$$y_a^{(j)} = \left(y_{1,a}, \dots, y_{j \mid n_a, a}\right)$$
 and $y_b^{(j)} = \left(y_{1,b}, \dots, y_{j \mid n_b, b}\right)$

Flexible, sequential setting



- data come in a stream of data blocks j=1,
- each block has $n = \overline{n_a + n_b}$ observations
- observations seen up to and including block *j*:

$$y_a^{(j)} = (y_{1,a}, \dots, y_{j \mid n_a, a})$$
 and $y_b^{(j)} = (y_{1,b}, \dots, y_{j \mid n_b, b})$

O.K. as long as we "lock in" block composition before start of that block!

Running example: 2x2 contingency table setting

2x2 contingency table

Strategy

Success

Failure

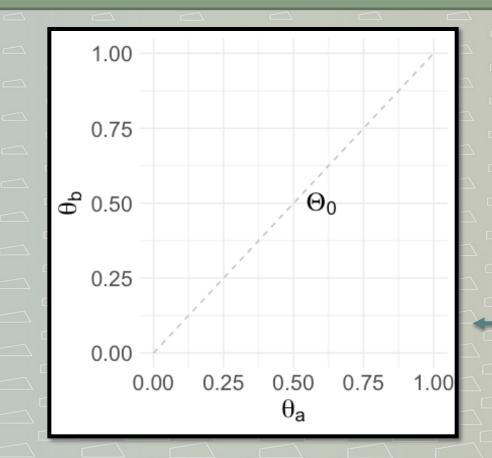
S(A) S(B)

F(A) F(B)

Do success probabilities differ between strategies?

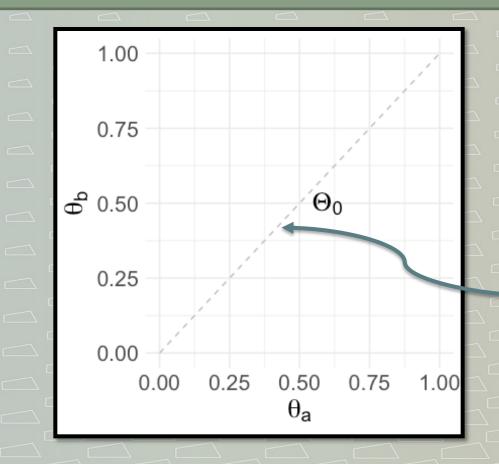
- \mathcal{H}_0 : observations $Y \in \{0,1\}$ independent of strategy $X \in \{a,b\}$
- Equivalently, when $Y_x \overset{i.i.d.}{\sim}$ Bernoulli(θ_x): \mathcal{H}_0 : $\theta_a = \theta_b$.

2x2 contingency table setting



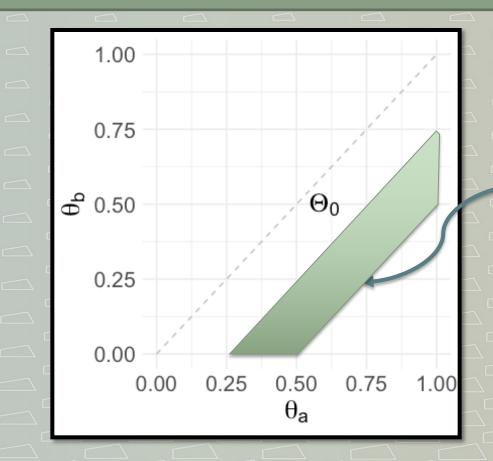
"True" success probabilities for each strategy somewhere in the unit square

2x2 contingency table setting



Testing: outside of the dashed line?

2x2 contingency table setting



Estimating: somewhere in the shaded area?

Tool for analyzing sequential data: E-variables*

• Nonnegative RV S, where for all $P_0 \in \mathcal{H}_0$:

$$\mathbb{E}_{P_0}[S] \leq 1$$

- Straightforward implementation in test: reject \mathcal{H}_0 iff $S \geq \alpha^{-1}$
- Type-I error guarantee at α (e.g. $\alpha = 0.05$, reject if $S \ge 20$)

Point alternative 2 data streams: nice general expression!

Point $\mathcal{H}_1 P_{\theta_a,\theta_b}$ (Turner, 2021):

$$S(Y^{(1)}) := \prod_{i=1}^{n_a} \frac{p_{\theta_a}(Y_{i,a})}{p_{\theta_0}(Y_{i,a})} \prod_{i=1}^{n_b} \frac{p_{\theta_b}(Y_{i,b})}{p_{\theta_0}(Y_{i,b})}$$

E-variable when we choose $\theta_0 = (n_a/n)\theta_a + (n_b/n)\theta_b$

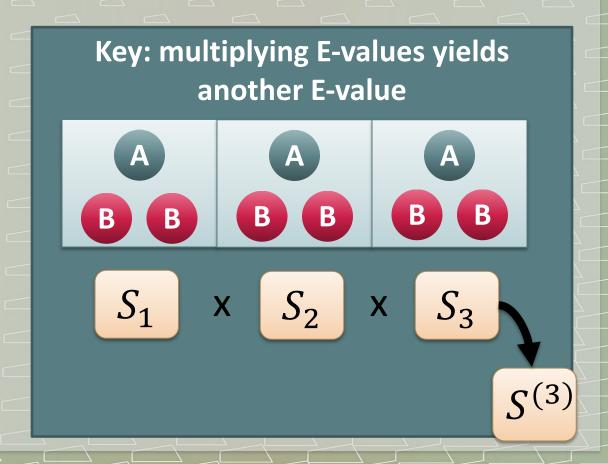
E-process for two data streams

 Can make an e-process: multiply Evalues for all data blocks

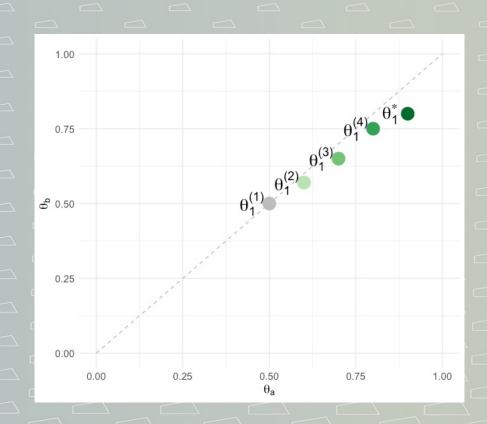
$$S^{(m)}(Y^{(m)}) := \prod_{j=1}^{m} S(Y_j)$$

For arbitrary stopping rule (E-value ≥ 20, no money for further experiment, etc..):

$$P_0(\exists m: S^{(m)}(Y^{(m)}) \ge \alpha^{-1}) \le \alpha$$

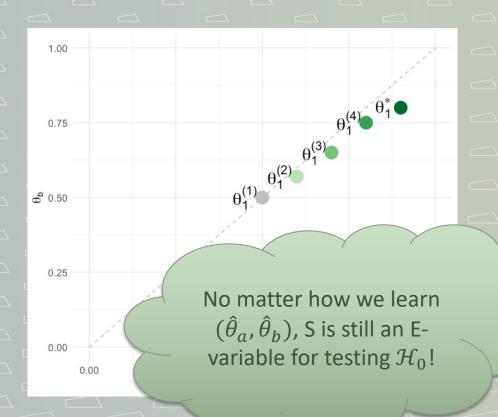


Learn parameter for \mathcal{H}_1



- Can learn estimate $(\hat{\theta}_a, \hat{\theta}_b)$ of true alternative before each new data block, based on past data
 - Maximum likelihood
 - MAP estimator
 - Posterior mean, ...
- Restrict search space based on expert knowledge

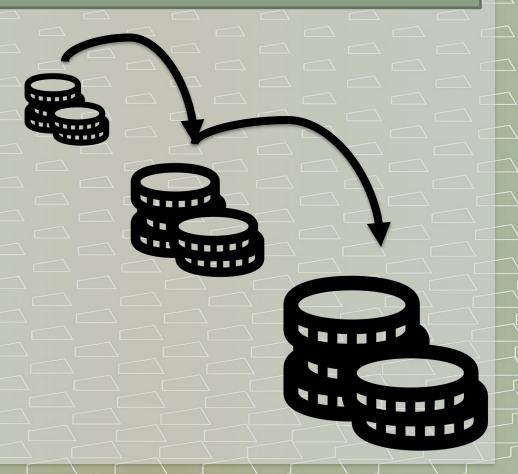
Learn parameter for \mathcal{H}_1



- Can learn estimate $(\hat{\theta}_a, \hat{\theta}_b)$ of true alternative before each new data block, based on past data
 - Maximum likelihood
 - MAP estimator
 - Posterior mean, ...
- Restrict search space based on expert knowledge

Evidence against \mathcal{H}_1 and Type-II error

- **GRO criterion:** in sequential experiments: optimize "growth rate" of E-variable, $\mathbb{E}_{P_1}[\log S]$ (Grünwald, 2019)
- Minimize notion of **regret**: loss of capital growth under alternative due to not knowing true P_1 .
- Closely connected to optimizing power



2x2 E-values vs classical counterpart

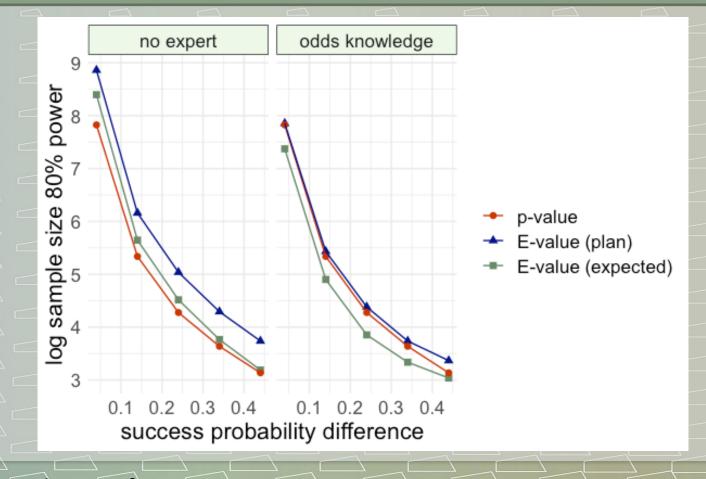
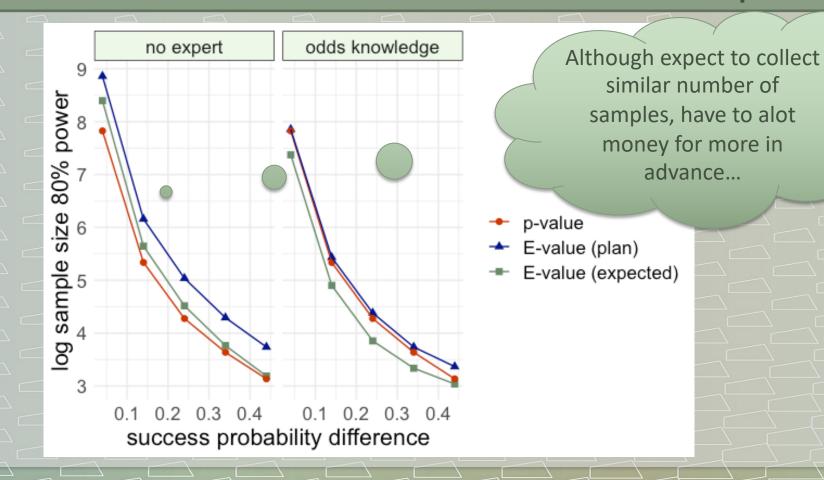
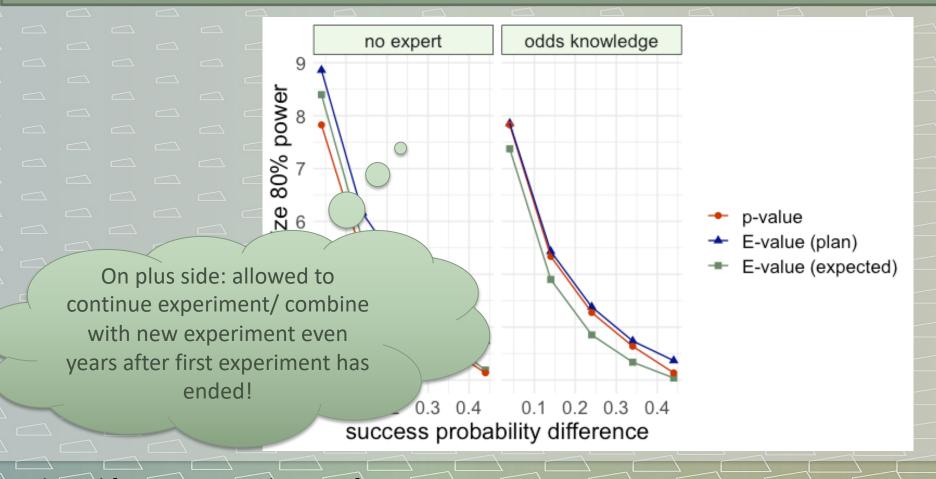


Figure adapted from Turner et al., 2021, figure 4

2x2 E-values vs classical counterpart

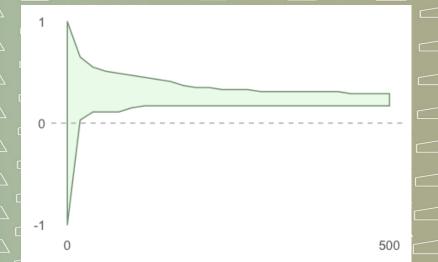


2x2 E-values vs classical counterpart



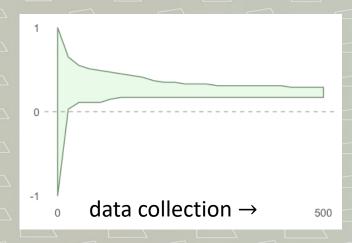
Extension to confidence

intervals



Anytime-valid confidence sequences

Update effect size estimate each time a new batch of data has come in, with coverage guarantee (real value is in my estimate with some minimum probability)



Formally; confidence sequence CS with coverage at level $(1 - \alpha)$:

- $-P_{\theta_a,\theta_b}$ (for any $m=1,2,\ldots:\delta(\theta_a,\theta_b)\notin CS_{(m)}$) $\leq \alpha$
- $-\delta(\theta_a,\theta_b)$: measure of **effect size**

Key: use E-process to test effect size values

- Let $S_{\Theta_0(\delta)}^{(m)}$ be an E-process for testing:
 - $\mathcal{H}_0 \coloneqq \{ P_{\theta_0} : \theta_0 \in \Theta_0(\delta) \}$
- Probability of falsely rejecting \mathcal{H}_0 bounded by α (because it is an E-process)!
- Construct anytime-valid confidence sequence $CS_{\alpha,(m)} = \left\{ \delta : S_{\Theta_0(\delta)}^{(m)} \leq \frac{1}{\alpha} \right\}$
- \rightarrow gives us the desired coverage at level (1α) .

Extension to \mathcal{H}_0 beyond $\theta_a = \theta_b$: examples

Effect size $\delta: (\theta_a, \theta_b) \to \gamma; \gamma \in \Gamma$.

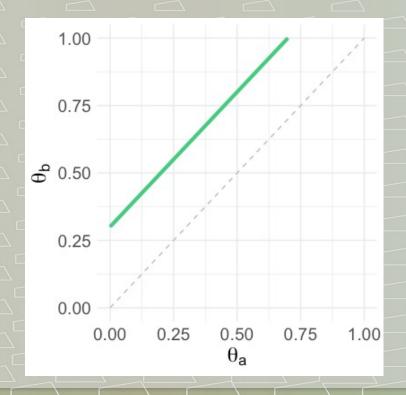
- E.g. Risk Difference:
$$\delta(\theta_a, \theta_b) =$$

$$\theta_b - \theta_a, \Gamma = [-1, 1]$$

- E.g. Odds Ratio:
$$\delta(\theta_a, \theta_b) =$$

$$\frac{\theta_b}{1-\theta_b} \frac{1-\theta_a}{\theta_a}$$
, $\Gamma = \mathbb{R}^+$

$$\Theta_0(\delta) = \{(\theta_a, \theta_b): \theta_b - \theta_a = 0.3\}$$



Extension to \mathcal{H}_0 beyond $\theta_a = \theta_b$: examples

Effect size
$$\delta: (\theta_a, \theta_b) \to \gamma; \gamma \in \Gamma$$
.

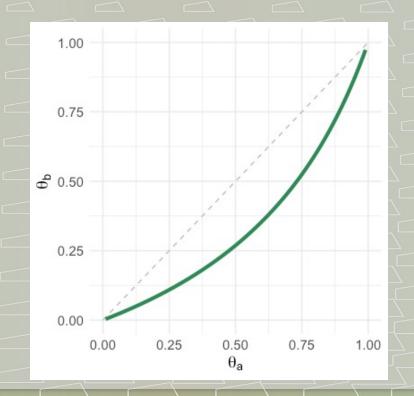
- E.g. Risk Difference:
$$\delta(\theta_a, \theta_b) =$$

$$\theta_b - \theta_a$$
, $\Gamma = [-1, 1]$

- E.g. Odds Ratio:
$$\delta(\theta_a, \theta_b) =$$

$$\frac{ heta_b}{1- heta_b} \frac{1- heta_a}{ heta_a}$$
 , $\Gamma=\mathbb{R}^+$

$$\Theta_0(\delta) = \{ (\theta_a, \theta_b) : lOR(\theta_b, \theta_a) = -1 \}$$



Extension of E-variable for streams to general null hypothesis $\Theta_0(\delta)$ for 2x2 tables

$$S_{\Theta_0}(Y^{(1)}) := \prod_{i=1}^{n_a} \frac{p_{\widehat{\theta}_a}(Y_{i,a})}{p_{\theta_a^{\circ}}(Y_{i,a})} \prod_{i=1}^{n_b} \frac{p_{\widehat{\theta}_b}(Y_{i,b})}{p_{\theta_b^{\circ}}(Y_{i,b})'}$$

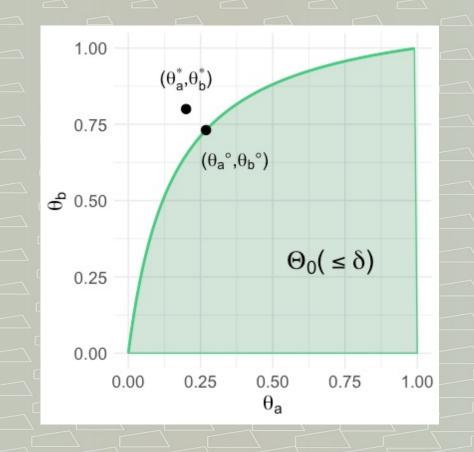
where $(\theta_a^{\circ}, \theta_b^{\circ})$ achieve

$$\min_{(\theta_a,\theta_b)\in\Theta_0(\delta)} D(P_{\widehat{\theta}_a,\widehat{\theta}_b}(Y_a^{n_a},Y_b^{n_b})|P_{\theta_a^{\circ},\theta_b^{\circ}}(Y_a^{n_a},Y_b^{n_b}))$$

and we estimate the point $(\hat{\theta}_a, \hat{\theta}_b)$ as before (Turner, 2022)

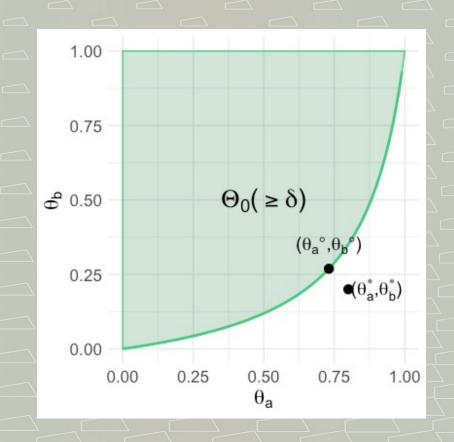
Tricky case: odds ratio and convexity of \mathcal{H}_0

- Need convexity of $\Theta_0(\delta)$ to construct E-variable
- $\delta > 0 \rightarrow \text{can estimate lower}$ bound (see figure)
- $\delta < 0 \rightarrow \text{can estimate}$ upper bound

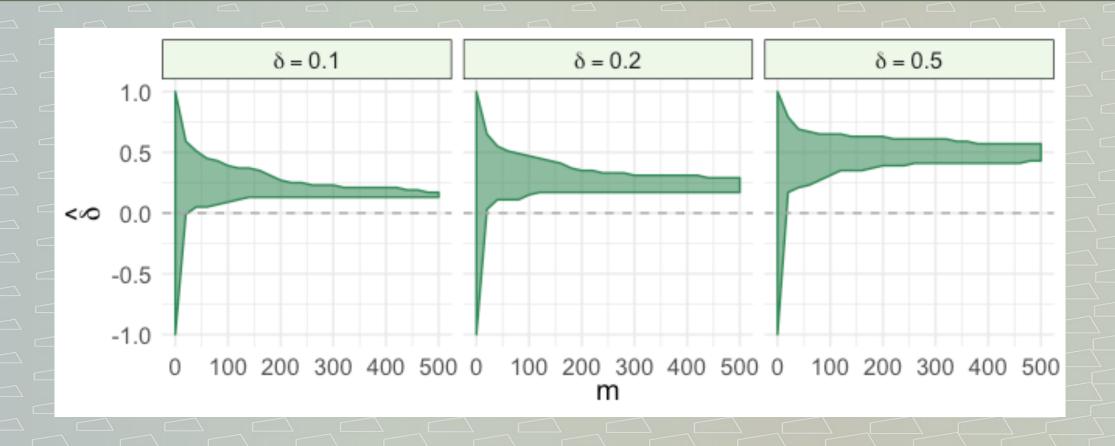


Tricky case: odds ratio and convexity of \mathcal{H}_0

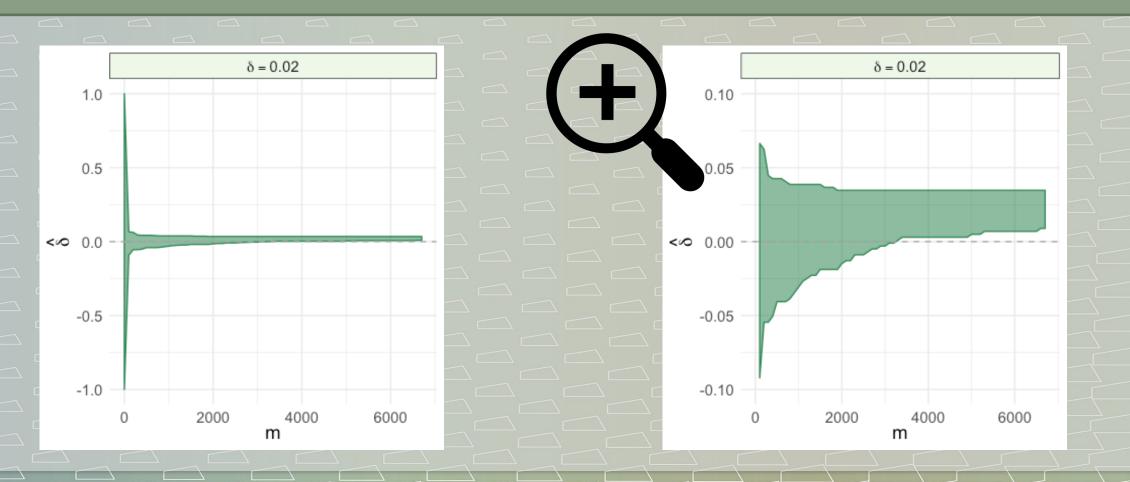
- Need convexity of $\Theta_0(\delta)$ to construct E-variable
- $\delta > 0 \rightarrow \text{can estimate lower}$ bound
- δ < 0 \rightarrow can estimate upper bound (see figure)



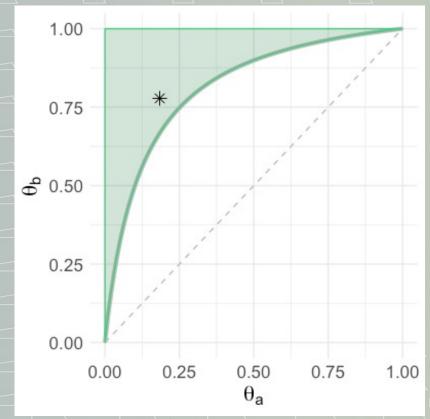
Simulations: risk difference



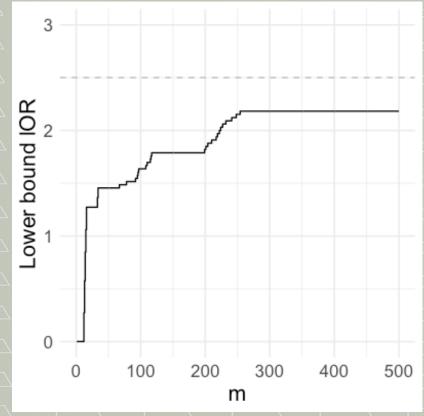
Simulations: risk difference



Simulation: log of the odds ratio

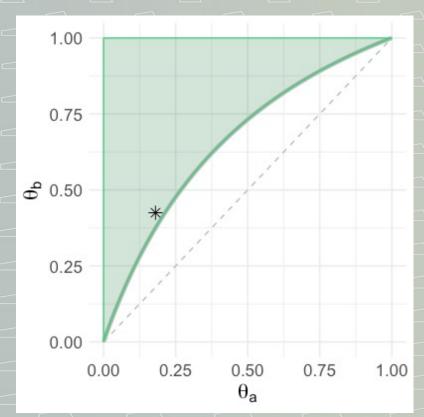


One-sided CS^+ at data block m = 500

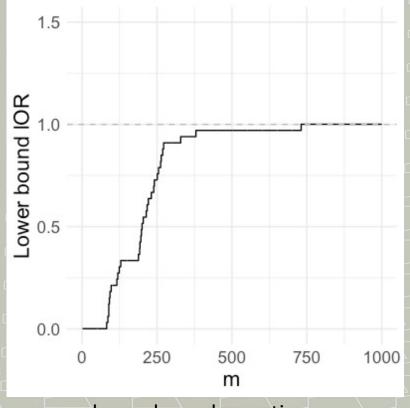


lower bound over time

Simulation: log of the odds ratio



One-sided CS^+ at data block m = 500



lower bound over time

Conclusion and novelty

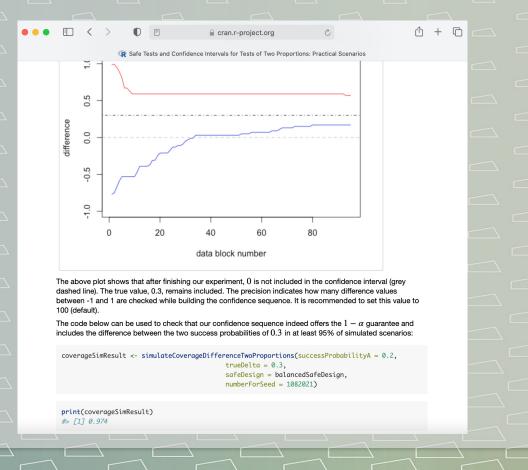
- To our knowledge, really new:
 - flexibility (block size, user-specified notions of effect size)
 - growth rate optimality: expect evidence for H1 to grow as fast as possible during data collection
- Wald's sequential probability ratio test:
 - Probability ratios can be interpreted as "alternative" E-variables
 - Not growth-rate optimal
 - Only allow for testing odds ratio effect size

Extensions

- Beyond Bernoulli: GRO property? (work by Y. Hao and others)
- Stratified data and conditional independence
 - Use case at UMC Utrecht: real-time psychiatry research and recommendations

		Strategy	
		Α	В
um 1	Success	S(A1)	S(B1)
Stratum	Failure	F(A1)	F(B1)
um 2	Success	S(A2)	S(B2)
Stratum	Failure	F(A2)	F(B2)
nm 3	Success	S(A3)	S(B3)
Stratum	Failure	F(A3)	F(B3)

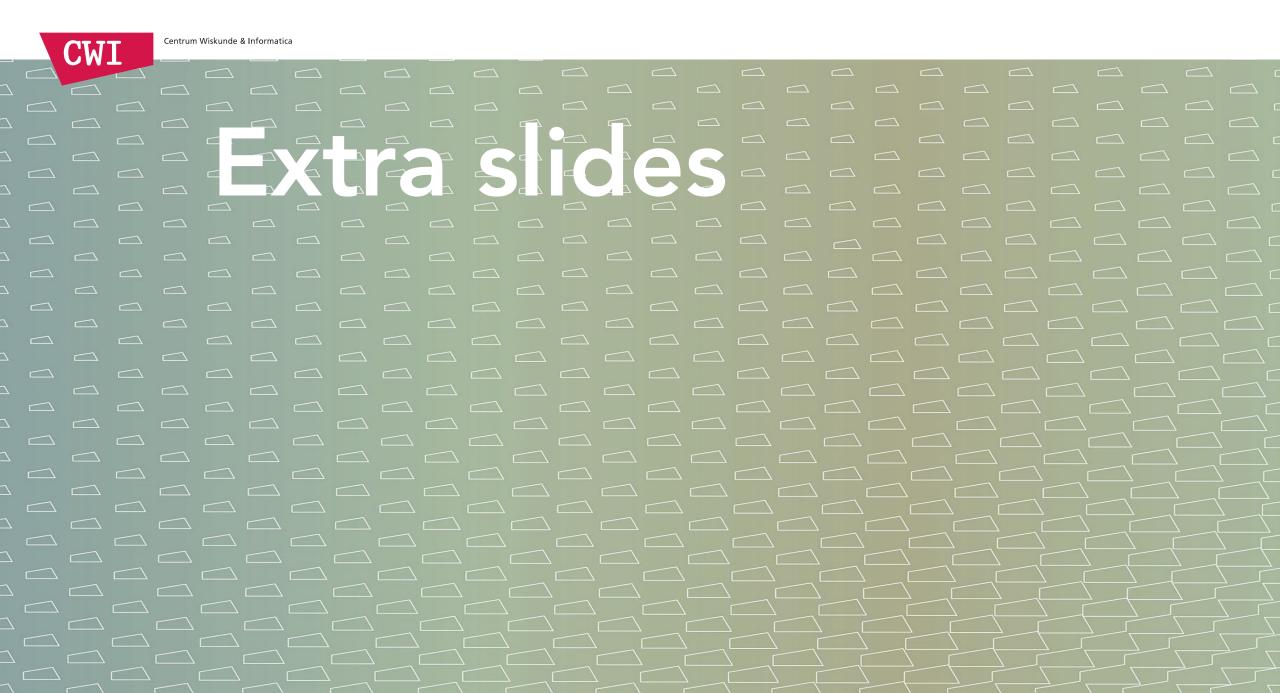
R Package and Vignettes



- In R console:
 install.packages(
 "safestats")
- https://CRAN.R project.org/package=safesta
 ts

Further reading and references

- On the theory of E-values:
 - P.D. Grünwald, R. de Heide and W. Koolen (2019) on ArXiv:
 - V. Vovk and R. Wang (2021). E-values: Calibration, combination, and applications. Annals of Statistics.
 - G. Shafer (2021). Testing by betting: A strategy for statistical and scientific communication. Journal of the Royal Statistical Society, Series A.
- On implementations of E-values:
 - R.J. Turner, A. Ly and P.D. Grünwald (2021) on ArXiv:2106.02693
 - R.J. Turner and P.D. Grünwald (2022) on ArXiv:2203.09785
 - R software: https://CRAN.R-project.org/package=safestats



Use case: Enabling Personalised Interventions project

- 1. data is not accessible and remains in silos;
- 2. data is not analyzed correctly to yield proper clinical insights;
- 3. insights are not available to clinicians and patients to allow (self-)management of healthcare

Implementation in psychiatry research/ recommender systems

"Given the underlying syndrome, age and gender of a patient, do we estimate ECT treatment to be more effective than pharmaceutical treatment?"

"Given age, gender, diagnosis and antidepressant treatment type of a patient, what will be the effect of adding sleep medication to treatment?"