DeepMind

Causality in A/B Testing

Alan Malek (DeepMind, formerly Optimizely)

25/05/2022

DeepMind

Causal Inference?

Example: advanced options

- New check-out flow
 - Present "advanced options"
 - Want to measure impact on spend
- Users can opt-in to beta, which shows "advanced options" by default

LEGO NIT Creative S 2021 (2,6 Visit the LEGO S	tendo Entertainment Sys iet for Adults; Build Your 46 Pieces) tore 1,856 ratings 46 answered questions	own NES and TV, New
Amazon's Choice	for "lego nintendo"	
\$229 ⁹⁵		
√prime		
& FREE Returns	~	
Pay \$38.33/mo	th for 6 months, interest-free with your	Amazon Prime Rewards Visa Card
May be availabl	at a lower price from other sellers, potent	ially without free Prime shipping.
Eligible for ama	zonsmile donation.	
-		
Style: Frustratio	n-Free Packaging	^
Frustration-	Standard	
Free	Packaging	
\$229.95	\$229.95	
\$225.55	\$225.55	
F		
Ennance yo	r purchase	
Payment plans		/
1 option from \$	8.33/mo (6 mo) with 0% APR	
One-time pay	ment	
\$229.95		
Amanan Daim	Dewards Vice Card (anding with	Leave mere
\$38.33/mo (6	mo) Interest: \$0.00 (0% APR)	Learn more
Cannot be	ombined with any % back	
Financing of	ption applies to final order total amount	

. . . .

- Two user types:
 - Regular users
 - Power users
 - More likely to opt-in
 - Love options

LEGO Nintendo Entertainment System 71374 Building Kit; Creative Set for Adults; Build Your Own NES and TV, New 2021 (2,646 Pieces) Visit the LEGO Store 1,856 reliants | 46 answered questions

\$229⁹⁵

& FREE Returns

VS

Pay \$38.33/month for 6 months, interest-free with your Amazon Prime Rewards Visa Card

May be available at a lower price from other sellers, potentially without free Prime shipping. Eligible for **amazons**mile donation.

Style: Frustration-Free Packaging

Enhance your purchase

Payment plans From \$38.33/mo (6 mo) with 0% APR

Prelim I: Probability

- All users in the world: the population
- Model attributes
 - *U*: power user {0, 1}
 - A: advanced options {0, 1}
 - S: difference in spend \$
- Joint distribution $p\left(S,A,U\right)$ describes user demographics

Prelim II: Causal Model

- All users in the world: the population
- Model attributes
 - *U*: power user {0, 1}
 - A: advanced options {0, 1}
 - S: difference in spend \$
- Joint distribution $p\left(S,A,U
 ight)$ describes user demographics
- Causal model describes causal relationships between attributes
 - If an attribute changed, which other attributes would?

Constructing an example

• Power users less common

$$p(U = 1) = \frac{1}{3}, p(U = 0) = \frac{2}{3}$$

- Power users love new features $p(A = 1 | U = 1) = \frac{8}{12}$
- Regular users do not $p(A = 1 | U = 0) = \frac{5}{12}$
- Power user love options

 $\mathbb{E}[S|A=1, U=1] = \45

- Regular users are get confused easily $\mathbb{E}[S|A=1, U=0] = -\27
- Status Quo

 $\mathbb{E}[S|A = 0, U = 1] = \mathbb{E}[S|A = 0, U = 0] = \0

$$p(A = 1) = p(A = 1 | U = 1)p(U = 1) + p(A = 1 | U = 0)p(U = 0) = \frac{8}{123} + \frac{5}{123} = \frac{1}{2}$$

$$p(U=1|A=1) = \frac{p(A=1|U=1)p(U=1)}{p(A=1)} = \frac{\frac{8}{12}\frac{1}{3}}{\frac{1}{2}} = \frac{4}{9}$$

Are advanced options good?

• Idea: We have observational data

$$(a_1, u_1, s_1), \ldots, (a_n, u_n, s_n)$$

• Look at:

$$\mathbb{E}_{n}[S|A=1] - \mathbb{E}_{n}[S|A=0] \\ = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{a_{i}=1\}} s_{i}}{\#_{\{a_{i}=1\}}} - \frac{\sum_{i=1}^{n} \mathbb{1}_{\{a_{i}=0\}} s_{i}}{\#_{\{a_{i}=0\}}}$$

• Calculate:

$$\begin{split} \mathbb{E}[S|A=1] &= \mathbb{E}[S|A=1, U=1] p(U=1|A=1) \\ &+ \mathbb{E}[S|A=1, U=0] p(U=0|A=1) \\ &= \frac{4}{9} \$ 45 - \frac{5}{9} \$ 27 = \$ 5 \\ \mathbb{E}[S|A=0] &= \$ 0 \end{split}$$

• Indicates that we should add options!

What will happen if *we* set A=1?

- We only looked at correlations in the data: found that higher spend appeared when additional options are displayed
- What do you think will happen
- If we change *A=1* for everybody?
- Poll:
 - a. We will see a \$5 increase
 - b. The increase will be more than \$5
 - c. The increase will be less than \$5
 - d. The spend will actually decrease

- Power users less common $p(U=1) = \frac{1}{3}, p(U=0) = \frac{2}{3}$
- Power users love new features

$$p(A|U=1) = \frac{8}{12}$$

- Regular users do not $\frac{12}{5}$ $p(A|U=0) = \frac{5}{12}$
- Power user love options $\mathbb{E}[S|A=1, U=1] = \45
- Regular users are get confused easily $\mathbb{E}[S|A=1, U=0] = -\27
- Status Quo

 $\mathbb{E}[S|A=0, U=1] = \mathbb{E}[S|A=0, U=0] = \0

Mismatch

• Answer: d) The spend will decrease!

$$\mathbb{E}[S_{A=1}] = \mathbb{E}[S|A = 1, U = 1]p(U = 1) \\ + \mathbb{E}[S|A = 1, U = 0]p(U = 0) \\ = \frac{1}{3}\$45 - \frac{2}{3}\$27 = -\$3$$

- Power users less common $p(U = 1) = \frac{1}{3}, p(U = 0) = \frac{2}{3}$
- Power users love new features

$$p(A|U=1) = \frac{8}{12}$$

- Regular users do not $p(A|U=0) = \frac{5}{12}$
- Power user love options $\mathbb{E}[S|A=1, U=1] = \45
- Regular users are get confused easily $\mathbb{E}[S|A=1, U=0] = -\27
- Status Quo

 $\mathbb{E}[S|A=0, U=1] = \mathbb{E}[S|A=0, U=0] = \0

Conditional Distribution (Correlation) Causal Effect (Causation) p(U)p(U)U $p(S|U,A) \neq p(A) = \delta_{A=1}$ p(A|U)S $p(S_{A=1}|U)$ S $\mathbb{E}[S_{A=1}]$ $\mathbb{E}[S|A=1]$ $= \sum \mathbb{E}[S|A=1, U=u]p(U=u|A=1)$ $= \sum \mathbb{E}[S|A=1, U=u]p(U=u)$ \mathcal{U} \mathcal{U} In our data, U=1|A=1was greatly overrepresented

- Confounding: a common cause of A and S
- If we see A and S correlate in the data, don't know whether
 - It was caused directly (red arrow)
 - Indirectly (through mutual correlation with U)

First solution: estimate causal effect from data

Second solution: randomized control trial (experimentation)

- Alter the environment to break the correlation between *U* and *A*
- Replace p(A|U) with a coin flip
- This is why experimentation works

$$ATE = \mathbb{E}[S_{RCT}|A = 1] - \mathbb{E}[S_{RCT}|A = 0]$$

$$\approx \frac{\sum_{i=1}^{n} 1_{\{a_i=1\}} s_i}{\#_{\{a_i=1\}}} - \frac{\sum_{i=1}^{n} 1_{\{a_i=0\}} s_i}{\#_{\{a_i=0\}}}$$
Data collected
by RCT

Causal Inference

Experimentation

 $p(S|U, A) \quad p(A) = \delta_{A=1}$

- Observational data is easy to collect
 - No additional infrastructure
 - Experiments can be impossible/unethical
- Often requires strong assumptions on the causal model
 - \circ Ignorability: $S_{A=a} \perp A | U$
 - U blocks "backdoor paths"
- Cannot learn causal model from observational data
- Communities: econometrics, social sciences p(U)

U

S

• Experiments are costly

 \boldsymbol{A}

- Requires infrastructure
- Expensive (opportunity cost)
- Easy to abuse
- No assumptions on causal model: we break the correlation through intervention
- Handles *unobserved* confounders
- RCT: "gold standard" in establishing causation

p(U)

U

 $p(S_{A-}$

 \boldsymbol{S}

DeepMind

3 Pitfalls

- Peeking: looking at the test results multiple times
- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- Peeking: looking at the test results multiple times
- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- The t-test is a fixed-sample-size test
 - False positives (finding a difference when there is none) are only controlled for a *single* view of the data
 - Misconception: a "more significant test" (where the effect is much smaller than the MDE) allows you to stop early
- Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

- Conclusion: stopping early can really blow up your false positive rate
- Either use sequential methods, or don't ignore your sample size calculator
- Examples weren't that contrived (took the most egregious 4 out of the first 20)
- Code after the end; try it yourself!

Pitfall II: Not correcting for multiplicity

- Need to adjust a when running multiple hypotheses
- Examples:
 - A/B/n tests
 - Looking at sub-populations/segments of the data
- Ways to adjust: Bonferroni, False Discovery Rate (FDR)
- Significant test ⇒ significant result on sub-population
 - OK: using sub-population data to form a hypothesis test which becomes the subject of a follow up experiment
 - Not ok: concluding anything statistical

Pitfall III: using the wrong paradigm

- Multi-armed bandits:
 - Have multiple options, want to funnel users to the best performing one
 - Objective: most users to best option, quickly
 - No Type I error guarantees, but can guarantee low regret
 - E.g. which headline to show on today's front page?
- When hypothesis testing appropriate?
 - When you really need false positive control
 - Results used to decide on long-term changes
 - Results used to steer development / future testing efforts
 - E.g. should we invest more in better descriptions or better pictures
- When are multi-Armed bandits appropriate?
 - When knowledge of the best option has little effect on future decisions
 - There is lots of temporal variation / change in actions
 - E.g. population distribution today and tomorrow are different

DeepMind

The end and thank you

Code

```
import numpy as np
import scipy
import matplotlib.pyplot as plt
from statsmodels.stats.power import tt ind solve power
n = 3000
min sample size = tt ind solve power(effect size=.1, alpha=0.1, power=0.8, ratio=1)
c samples = np.random.normal(loc=0, scale=cov, size=(n,))
c2 samples = np.random.normal(loc=0, scale=cov, size=(n,))
t samples = np.random.normal(loc=.1, scale=cov, size=(n,))
AA p values = [scipy.stats.ttest ind(c2 samples[:pos], c samples[:pos]).pvalue for pos in range(n)]
AB p values = [scipy.stats.ttest ind(t samples[:pos], c samples[:pos]).pvalue for pos in range(n)]
fiq, (ax1, ax2) = plt.subplots(2, 1, fiqsize=(20, 10))
ax1.plot(AA values)
ax1.plot([.1] * n)
ax1.plot([min sample size] * n, np.linspace(0,1,n))
ax2.plot(AB_values)
ax2.plot([.1] * n)
ax2.plot([min sample size] * n, np.linspace(0,1,n))
```