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Causality in A/B Testing



1 Causal 
Inference?



Example: advanced options
● New check-out flow

○ Present “advanced options”
○ Want to measure impact on spend

● Users can opt-in to beta, which shows 
“advanced options” by default

VS

● Two user types:
○ Regular users
○ Power users

■ More likely to opt-in
■ Love options



Prelim I: Probability

● All users in the world: the population

● Model attributes
○ U: power user {0, 1}
○ A: advanced options {0, 1}
○ S: difference in spend $

● Joint distribution                    describes user 
demographics



Prelim II: Causal Model

A S

U● All users in the world: the population

● Model attributes
○ U: power user {0, 1}
○ A: advanced options {0, 1}
○ S: difference in spend $

● Joint distribution                    describes user 
demographics

● Causal model describes causal relationships 
between attributes

○ If an attribute changed, which other attributes 
would?



Constructing an example

● Power users less common

● Power users love new features

● Regular users do not

● Power user love options

● Regular users are get confused easily

● Status Quo

A S

U



● Idea: We have observational data

● Look at:

● Calculate:

● Indicates that we should add options!

Are advanced options good?



● We only looked at correlations in the data: 
found that higher spend appeared when 
additional options are displayed

● What do you think will happen
● If we change A=1 for everybody?
● Poll:

a. We will see a $5 increase
b. The increase will be more than $5
c. The increase will be less than $5
d. The spend will actually decrease

What will happen if we set A=1? ● Power users less common

● Power users love new features

● Regular users do not

● Power user love options

● Regular users are get confused easily

● Status Quo



● Answer: d) The spend will decrease!

Mismatch ● Power users less common

● Power users love new features

● Regular users do not

● Power user love options

● Regular users are get confused easily

● Status Quo

A S

U

Set A=1 by 
intervention



≠A S

U

A S

U

Conditional Distribution (Correlation) Causal Effect (Causation)

In our data, U=1|A=1 
was greatly 
overrepresented
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U

Conditional Distribution (Correlation) Causal Effect (Causation)

In our data, U=1|A=1 
was greatly 
overrepresented

Have confounding between A and S!

● Confounding: a common cause of A and S
● If we see A and S correlate in the data, don’t know whether

○ It was caused directly (red arrow)
○ Indirectly (through mutual correlation with U)



≠A S

U

A S

U

First solution: estimate causal effect from data

Inverse Propensity 
Weight (IPW) 
estimator

Observational 
data



A S

U

Second solution: randomized control trial (experimentation)

Data collected 
by RCT

● Alter the environment to break the 
correlation between U and A

● Replace                 with a coin flip

● This is why experimentation works



Private & ConfidentialCausal Inference                                  Experimentation

● Observational data is easy to collect
○ No additional infrastructure
○ Experiments can be 

impossible/unethical
● Often requires strong assumptions on 

the causal model
○ Ignorability:
○ U blocks “backdoor paths”

● Cannot learn causal model from 
observational data

● Communities: econometrics, social 
sciences

● Experiments are costly
○ Requires infrastructure
○ Expensive (opportunity cost)
○ Easy to abuse

● No assumptions on causal model: we 
break the correlation through 
intervention

● Handles unobserved confounders
● RCT: “gold standard” in establishing 

causation

A S

U

A S

U



2 3 Pitfalls



● Peeking: looking at the test results multiple times
● The t-test is a fixed-sample-size test

○ False positives (finding a difference when there is none) are only 
controlled for a single view of the data

○ Misconception: a “more significant test” (where the effect is much 
smaller than the MDE) allows you to stop early

● Pop quiz: Below is one A/A and one A/B test. Can you tell them apart?

Pitfall I: peeking

A/A

A/B

)
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● Conclusion: stopping early can really blow up your false positive rate
● Either use sequential methods, or don’t ignore your sample size calculator
● Examples weren’t that contrived (took the most egregious 4 out of the first 20)
● Code after the end; try it yourself!

Pitfall I: peeking



Pitfall II: Not correcting for multiplicity

● Need to adjust ɑ when running multiple hypotheses
● Examples:

○ A/B/n tests
○ Looking at sub-populations/segments of the data

● Ways to adjust: Bonferroni, False Discovery Rate (FDR)
● Significant test ⇏ significant result on sub-population

○ OK: using sub-population data to form a hypothesis test which 
becomes the subject of a follow up experiment

○ Not ok: concluding anything statistical

https://en.wikipedia.org/wiki/False_discovery_rate


Pitfall III: using the wrong paradigm

● Multi-armed bandits: 
○ Have multiple options, want to funnel users to the best performing one
○ Objective: most users to best option, quickly
○ No Type I error guarantees, but can guarantee low regret
○ E.g. which headline to show on today’s front page?

● When hypothesis testing appropriate?
○ When you really need false positive control
○ Results used to decide on long-term changes
○ Results used to steer development / future testing efforts
○ E.g. should we invest more in better descriptions or better pictures

● When are multi-Armed bandits appropriate?
○ When knowledge of the best option has little effect on future decisions
○ There is lots of temporal variation / change in actions
○ E.g. population distribution today and tomorrow are different



The end and 
thank you



Code

import numpy as np

import scipy

import matplotlib.pyplot as plt

from statsmodels.stats.power import tt_ind_solve_power

n = 3000

min_sample_size = tt_ind_solve_power(effect_size=.1, alpha=0.1, power=0.8, ratio=1)

c_samples = np.random.normal(loc=0,scale=cov, size=(n,))

c2_samples = np.random.normal(loc=0,scale=cov, size=(n,))

t_samples = np.random.normal(loc=.1, scale=cov, size=(n,))

AA_p_values = [scipy.stats.ttest_ind(c2_samples[:pos], c_samples[:pos]).pvalue for pos in range(n)]

AB_p_values = [scipy.stats.ttest_ind(t_samples[:pos], c_samples[:pos]).pvalue for pos in range(n)]

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(20, 10)

ax1.plot(AA_values)

ax1.plot([.1]* n)

ax1.plot([min_sample_size] * n, np.linspace(0,1,n))

ax2.plot(AB_values)

ax2.plot([.1]* n)

ax2.plot([min_sample_size] * n, np.linspace(0,1,n))


