Instance-optimal algorithms for A/B testing

Wouter M. Koolen

May 25, 2022

Senior Researcher Machine Learning Group Centrum Wiskunde & Informatica

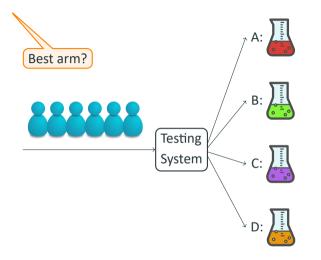
Main message

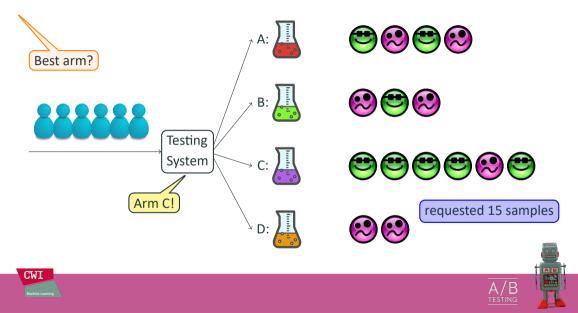
- A/B Testing aims to support decision making
- A/B Testing tools constrain decision making
- Flexible testing \Leftrightarrow creative decisions

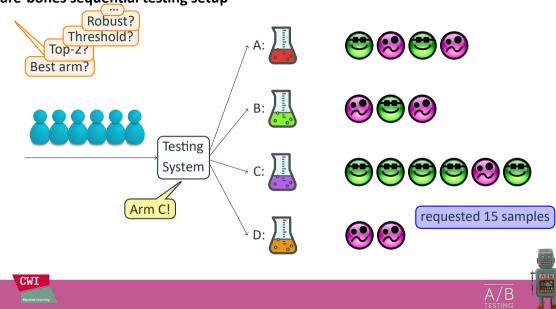
Today:

- How difficult is a given testing problem?
- How to solve a given testing problem?

Setting and Problem

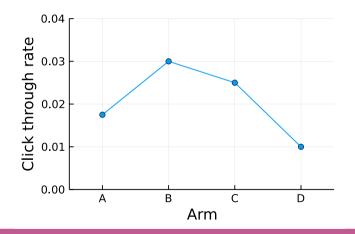






Model for the Environment

The unknown true bandit instance $\mu = (\mu_A, \mu_B, \mu_C, \mu_D)$



Algorithms for fixed-confidence testing $\delta=0.05$

Specified by:

- Sampling rule
- Stopping rule
- Recommendation rule

Reliable Must be δ -correct for *any* bandit **Efficient** Minimise # samples

Characteristic Time and Oracle Weights

Characteristic Time and Oracle Weights

Answering correctly for μ requires data to reject all bandits where that answer is wrong.

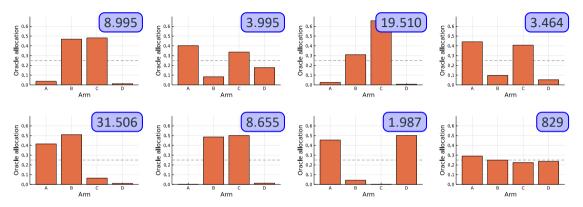
Theorem (Garivier and Kaufmann, 2016)

Any δ -correct testing algorithm must, for any bandit instance μ , take samples at least

Why should we care?

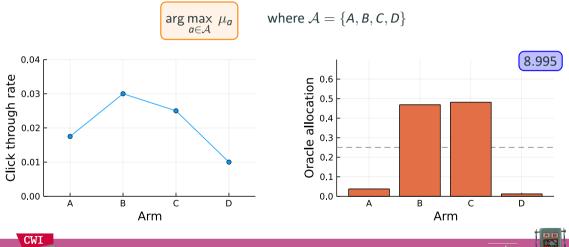
- Characterises* complexity of each problem instance μ
- Optimal testing algorithm must sample with proportions ${
 m arg\,max}_w$

Examples: variations of Best Arm question



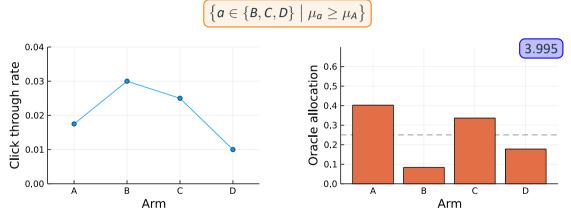
- Sample complexities vastly different between questions
- Optimal allocation depends strongly on the specific question being asked

Best Arm Identification (BAI)

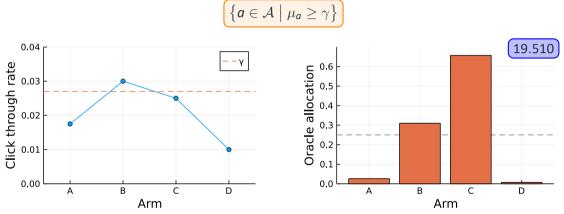


ine Learning

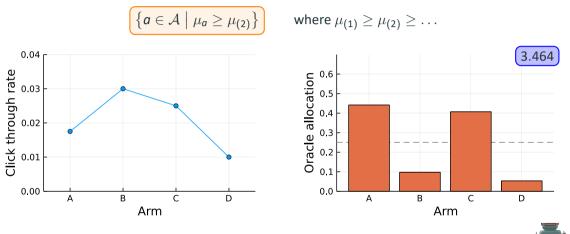
All-Better-than-the-Control (ABC)



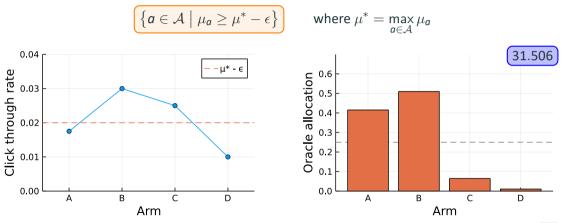
All-Better-than-Threshold



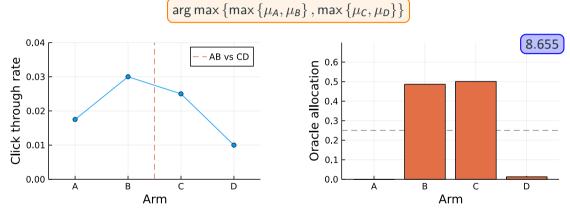
Top-2



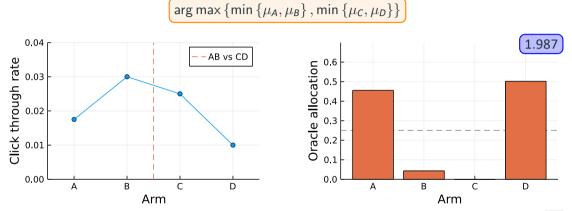
Near-optimal arms



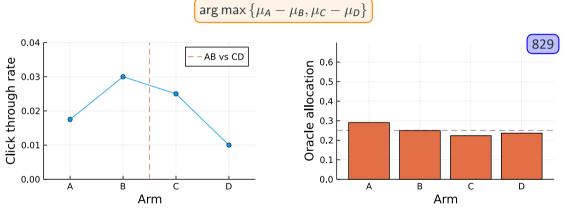
Winning Side



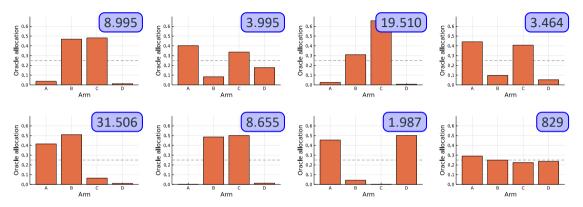
Robust best arm



Largest Profit



Overview of Optimal Sampling Allocations



- Sample complexities vastly different between questions
- Optimal allocation depends strongly on the specific question being asked

Where this brings us

- Specific question posed matters
- Optimise it for the eventual decision of interest

But how?

Canonical Path to Optimal Algorithms

Sample complexity lower bound at μ governed by:

 $\sum w_a \operatorname{KL}(\mu_a, \lambda_a)$ min max bandit λ with answer different from that of μ arm a arm proportions w

Main challenge: sampling like $\arg \max_w$ without knowing μ .

Saddle Point Approach

Approx. solve saddle point problem iteratively: $w_1, w_2, \ldots o w^*(\mu)$

Saddle Point Approach

Approx. solve saddle point problem iteratively: $w_1, w_2, \ldots o w^*(\mu)$

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Pick arm $A_t \sim w_t$
- Plug-in estimate $\hat{\mu}_t$ (so problem is shifting).
- Advance the saddle point solver one iteration per bandit interaction.
- Add optimism to gradients to induce exploration ($\hat{\mu}_t
 ightarrow \mu$).
- Regret bounds + concentration + optimism \Rightarrow finite-confidence guarantee:

Saddle Point Approach

Approx. solve saddle point problem iteratively: $w_1, w_2, \ldots o w^*(\mu)$

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Pick arm $A_t \sim w_t$
- Plug-in estimate $\hat{\mu}_t$ (so problem is shifting).
- Advance the saddle point solver one iteration per bandit interaction.
- Add optimism to gradients to induce exploration ($\hat{\mu}_t
 ightarrow \mu$).
- Regret bounds + concentration + optimism \Rightarrow finite-confidence guarantee:

Theorem (Instance-Optimality)

For every $\delta \in (0,1)$ and bandit $oldsymbol{\mu}$, the above scheme takes samples bounded by

$$samples(\mu) \leq (samples(\mu)) \ln \frac{1}{\delta} + o(\ln \frac{1}{\delta})$$

Conclusion

Conclusion

- Every sequential testing problem has associated
 - characteristic time: quantifying sample complexity, and
 - oracle allocation: encoding desired optimal behaviour
- Both are highly sensitive to the precise question posed
- So: a lot to gain by fine-tuning the testing effort to the "why"
- Once the question is crisp, optimal algorithms are quickly becoming technology.
 - State-of-art performance in many applications

Thanks!

References

- Degenne, R., W. M. Koolen, and P. Ménard (Dec. 2019). "Non-Asymptotic Pure Exploration by Solving Games". In: Advances in Neural Information Processing Systems (NeurIPS) 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 14492–14501.
- Garivier, A. and E. Kaufmann (2016). "Optimal Best arm Identification with Fixed Confidence". In: *Proceedings of the 29th Conference On Learning Theory (COLT)*.

