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Main message

• A/B Testing aims to support decision making

• A/B Testing tools constrain decision making

• Flexible testing⇔ creative decisions

Today:

• How difficult is a given testing problem?

• How to solve a given testing problem?



  

Setting and Problem



  

Bare-bones sequential testing setup
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Model for the Environment

The unknown true bandit instance µ = (µA, µB, µC, µD)



  

Algorithms for fixed-confidence testing δ = 0.05

Specified by:

• Sampling rule

• Stopping rule

• Recommendation rule

Reliable Must be δ-correct for any bandit

Efficient Minimise # samples



  

Characteristic Time and Oracle Weights



  

Characteristic Time and Oracle Weights

Answering correctly for µ requires data to reject all bandits where that answer is wrong.

Theorem (Garivier and Kaufmann, 2016)

Any δ-correct testing algorithm must, for any bandit instance µ, take samples at least

samples(µ) ≥ ln
1

δ
· 1

max
arm proportionsw

min
bandit λ with answer
different from that of µ

∑
arm a

wa KL(µa, λa)

Why should we care?

• Characterises∗ complexity of each problem instance µ

• Optimal testing algorithm must sample with proportions argmaxw



  

Examples: variations of Best Arm question

8.995 3.995 19.510 3.464

31.506 8.655 1.987 829

• Sample complexities vastly different between questions

• Optimal allocation depends strongly on the specific question being asked



  

Best Arm Identification (BAI)

argmax
a∈A

µa whereA = {A, B, C,D}

8.995



  

All-Better-than-the-Control (ABC)

{
a ∈ {B, C,D}

∣∣ µa ≥ µA

}
3.995



  

All-Better-than-Threshold

{
a ∈ A

∣∣ µa ≥ γ
}

19.510



  

Top-2

{
a ∈ A

∣∣ µa ≥ µ(2)

}
where µ(1) ≥ µ(2) ≥ . . .

3.464



  

Near-optimal arms

{
a ∈ A

∣∣ µa ≥ µ∗ − ε
}

where µ∗ = max
a∈A

µa

31.506



  

Winning Side

argmax {max {µA, µB} ,max {µC, µD}}

8.655



  

Robust best arm

argmax {min {µA, µB} ,min {µC, µD}}

1.987



  

Largest Profit

argmax {µA − µB, µC − µD}

829



  

Overview of Optimal Sampling Allocations

8.995 3.995 19.510 3.464

31.506 8.655 1.987 829

• Sample complexities vastly different between questions

• Optimal allocation depends strongly on the specific question being asked



  

Where this brings us

• Specific question posed matters

• Optimise it for the eventual decision of interest

But how?



  

Canonical Path to Optimal Algorithms



  

Instance-Optimal Algorithms

Sample complexity lower bound at µ governed by:

max
arm proportionsw

min
bandit λ with answer
different from that of µ

∑
arm a

wa KL(µa, λa)

Main challenge: sampling like argmaxw without knowing µ.



  

Saddle Point Approach

CW
Ispecialty

Approx. solve saddle point problem iteratively: w1,w2, . . . → w∗(µ)

Main pipeline (Degenne, Koolen, and Ménard, 2019):

• Pick arm At ∼ wt

• Plug-in estimate µ̂t (so problem is shifting).

• Advance the saddle point solver one iteration per bandit interaction.

• Add optimism to gradients to induce exploration (µ̂t → µ).

• Regret bounds + concentration + optimism⇒ finite-confidence guarantee:

Theorem (Instance-Optimality)

For every δ ∈ (0, 1) and bandit µ, the above scheme takes samples bounded by

samples(µ) ≤ samples(µ) ln 1
δ + o(ln 1

δ )
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Conclusion



  

Conclusion

• Every sequential testing problem has associated

• characteristic time: quantifying sample complexity, and

• oracle allocation: encoding desired optimal behaviour

• Both are highly sensitive to the precise question posed

• So: a lot to gain by fine-tuning the testing effort to the “why”

• Once the question is crisp, optimal algorithms are quickly becoming technology.

• State-of-art performance in many applications

Thanks!
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