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Main message

e A/B Testing aims to support decision making
¢ A/B Testing tools constrain decision making

¢ Flexible testing < creative decisions
Today:

e How difficult is a given testing problem?

e How to solve a given testing problem?
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Setting and Problem
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Bare-bones sequential testing setup

Best arm?
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Model for the Environment

The unknown true bandit instance p = (ua, (s, fic, i4p)
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Algorithms for fixed-confidence testing 6 = 0.05

Specified by:

e Sampling rule
e Stopping rule

e Recommendation rule

Reliable Must be §-correct for any bandit
Efficient Minimise # samples
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Characteristic Time and Oracle Weights
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Characteristic Time and Oracle Weights

Answering correctly for p requires data to reject all bandits where that answer is wrong.

Theorem (Garivier and Kaufmann, 2016)
Any o-correct testing algorithm must, for any bandit instance u, take samples at least

1 1
samples(p)| > Ing- :
max min E wg KL(pta, Ag)

arm proportions w  bandit X with answer
different from that of p @rma

Why should we care?

e Characterises™ complexity of each problem instance u
e Optimal testing algorithm must sample with proportions arg maxy,
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Examples: variations of Best Arm question

racle allocation
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e Sample complexities vastly different between questions

e Optimal allocation depends strongly on the specific question being asked

racle allocation

°
N

O o1t

0.6
05
04r
03

A/B

TESTING




Best Arm Identification (BAl)

where A = {A,B,C,D}
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0.04 -
(0] 0.6 F
) c U
© 0.03} o

: S o051
< ®
[e)) (9]
= o 04r
8002- (—003_
S K Rt I

(®)

S o001t © 021
O O o1}

0-00 1 1 1 1 .

A B [¢ D 0.0 A
Arm Arm

A/B

TESTING



All-Better-than-the-Control (ABC)

[{0 € {B,C,D} | pta > uA}]
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All-Better-than-Threshold
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Top-2

[{a cA ‘ fa > ,u(z)}] where 1) > p) > ...
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Near-optimal arms

[{a €A | pa>p - e}J where p/* = max fig
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Winning Side

[arg max {max {ua, ug} , max {1c, ,UD}}]
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Robust best arm

[arg max {min {ua, ug} , min {pc, MD}}}
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Largest Profit

[arg max {14 — pg; fic — MD}}
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Overview of Optimal Sampling Allocations
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e Sample complexities vastly different between questions

e Optimal allocation depends strongly on the specific question being asked

racle allocation
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Where this brings us

¢ Specific question posed matters

e Optimise it for the eventual decision of interest

But how?
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Canonical Path to Optimal Algorithms
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Instance-Optimal Algorithms

Sample complexity lower bound at p governed by:

max min Z wg KL( g, Ag)

arm proportions w  bandit A with answer
different from that of o arma

Main challenge: sampling like arg max,, without knowing p.
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Saddle Point Approach

Approx. solve saddle point problem iteratively: wy, ws, ... — w* () S
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Saddle Point Approach

@)

Approx. solve saddle point problem iteratively: wy, ws, ... — w* () S @/
%,

Main pipeline (Degenne, Koolen, and Ménard, 2019): /‘9//}

e Pickarm A; ~ w;

e Plug-in estimate [i; (so problem is shifting).

¢ Advance the saddle point solver one iteration per bandit interaction.

¢ Add optimism to gradients to induce exploration (fi; — ).

e Regret bounds + concentration + optimism =- finite-confidence guarantee:
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Saddle Point Approach

@)

Approx. solve saddle point problem iteratively: wy, ws, ... — w* () % %
.

Main pipeline (Degenne, Koolen, and Ménard, 2019): /9//}

e Pickarm A; ~ wy

e Plug-in estimate fi; (so problem is shifting).

¢ Advance the saddle point solver one iteration per bandit interaction.

¢ Add optimism to gradients to induce exploration (fi; — ).

e Regret bounds + concentration + optimism =- finite-confidence guarantee:

Theorem (Instance-Optimality)
For every 6 € (0,1) and bandit p, the above scheme takes samples bounded by

samples(n) < [samples(u)|In % +o(In %)




Conclusion
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Conclusion

e Every sequential testing problem has associated
e characteristic time: quantifying sample complexity, and
e oracle allocation: encoding desired optimal behaviour

e Both are highly sensitive to the precise question posed

¢ So: a lot to gain by fine-tuning the testing effort to the “why”

¢ Once the question is crisp, optimal algorithms are quickly becoming technology.
e State-of-art performance in many applications

Thanks!
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