
Subpopulation-aware experimentation 
platform   
Christina Katsimerou
Principal Machine Learning Scientist

CWI, 25/05/2022



A B



nB

A/B/n testing
❖ Decision making
❖ Learning & Inspiration
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Experimenters want to monitor continuously their experiments to:
➔ Detect effects as quickly as possible
➔ Give up soon when there is no effect

Problem #2: No monitoring

Monitoring without properly correcting for it inflates the false positive rate.

The platform does not allow data dependent stopping times



New formulation

We aim to identify the subset of all variants that are better than the control, while:

● optimizing adaptively the stopping time of the A/B/n experiment

● being 𝛿-PAC:  the probability of stopping and returning a wrong answer must be ≤ 𝛿

● optimizing adaptively the allocation of variants to users
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Seasons → subpopulations

With J subpopulations, each variant 
is a mixture of J distributions.

The value of the variant a is:



Interaction with subpopulations 
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(a) Active

❏ Pick variant 
❏ Pick subpopulation

❏ See subpopulation
❏ Pick variant

❏ Pick variant 
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(b) Proportional (c) Oblivious

more powerful less powerful
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A/B/n Booking.com

K=2, J=4
Correct answer: {1, 2}
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We have already run successfully A/B/n experiments which we validated on the non adaptive 
platform

Still work to be done on:
● Delayed rewards
● epsilon-better
● …
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GLRT

Generalised Likelihood Ratio Statistic for exponential family bandit models:



Example
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