

## Modeling Infectious Diseases: Projecting Spread, Evaluating Interventions, and Resource Allocation

### Pinar Keskinocak, Ph.D.

William W. George Chair and Professor, School of Industrial and Systems Engineering Director, Center for Health and Humanitarian Systems



### **MISSION**

Make a positive "impact" through improved health & humanitarian systems worldwide





![](_page_3_Picture_0.jpeg)

Source: Nigeria Health Online, 2016

### Prevention

Insecticide nets Indoor residual spraying Vaccines

![](_page_3_Picture_4.jpeg)

Source: Medicins Sans Frontieres, 2015

### Surveillance

Monitoring of confirmed malaria cases

![](_page_3_Picture_8.jpeg)

Source: Making Malaria History, 2014

### **Treatment**

Rapid diagnostic tests and artemisinin-based combination therapy

![](_page_3_Picture_12.jpeg)

![](_page_4_Picture_0.jpeg)

Source: Nigeria Health Online, 2016

### Prevention

Insecticide nets Indoor residual spraying Vaccines

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

![](_page_4_Picture_6.jpeg)

Source: Medicins Sans Frontieres, 2015

### Surveillance

Monitoring of confirmed malaria cases

![](_page_4_Picture_10.jpeg)

Source: Making Malaria History, 2014

### **Treatment**

Rapid diagnostic tests and artemisinin-based combination therapy

![](_page_4_Figure_14.jpeg)

![](_page_4_Picture_15.jpeg)

STOP CHOLERA

Make Water Safe

TO PREVENT CHOLERA

![](_page_4_Picture_16.jpeg)

With the assistance of his colleagues, Wegwa Odol Othow (yellow shirt) measures a pond for application of a safe larvicide that helps stop the Guinea worm life cycle.

www.cdc.gov/coronavirus

![](_page_4_Picture_19.jpeg)

## Disease Models $\rightarrow$ Decision-Making

- Understanding and projecting the disease spread
- Evaluating the impact of intervention strategies
- Estimating resource needs
- Resource planning and allocation

Geographically and over time, by sub-populations

![](_page_5_Figure_6.jpeg)

Figure shows projected disease spread of flu after 90 days (Keskinocak/Swann team)

Influenza

Cholera

Guinea worm

Malaria

Polio

## **Infectious Disease Modeling**

Disease progression in an individual – Natural history

## Disease spread

![](_page_6_Picture_3.jpeg)

https://www.cdc.gov/media/subtopic/images.htm https://www.cdc.gov/fungal/antifungal-resistance.html https://en.wikipedia.org/wiki/Plasmodium\_falciparum

## Natural history – Example: Covid19

![](_page_7_Figure_1.jpeg)

## Disease spread – Example: Covid19

- Households
- Peer groups (e.g., workplace and schools)
- Community
- Household statistics, classroom sizes, age statistics
- Mobility & interaction patterns, e.g., workflow data

![](_page_8_Figure_6.jpeg)

## Disease spread - Transmission

- Human-to-human
  - Respiratory diseases (e.g., flu, Covid-19), STDs

## Vectors/Animals

Malaria, Guinea Worm

![](_page_9_Figure_5.jpeg)

## Disease spread – Example: Malaria

### Mosquito

- Natural death rate
- Percent of the population that bites per day
- Duration in the incubation stage
- Probability of a mosquito contracting malaria from a human in the incubation and infection stage
- Probability of contracting malaria from an asymptomatic person

- Human
- Probability of contracting malaria from an incubating or infectious mosquito
- Duration in the incubation stage for each age group
- Probability of transitioning from slow recovery to immunity / fast recovery
- Lag from incubation to symptomatic, infectious
- Recovery rates
- ..

• ..

• Environmental or other risk factors

## Disease spread - Transmission

- Human-to-human
  - Respiratory diseases (e.g., flu, Covid-19), STDs
- Vectors/Animals
  - Malaria, Guinea Worm

Figure 1.20 Complex Life Cycle of *Dracunculus medinensis* (Guinea worm)

![](_page_11_Picture_6.jpeg)

![](_page_12_Figure_0.jpeg)

## **Guinea Worm Disease**

Number of Reported Cases of Guinea Worm Disease by Year: 1989 -2016

![](_page_12_Figure_3.jpeg)

## Guinea Worm Disease in Chad

Zero Human Cases in Chad For 9 years 149 127 10 10 10 14 n n 

> CHAD GUINEA WORM ERADICATION PROGRAM FREQUENCY OF DRACUNCULIASIS AMONG HUMANS AND DOGS BY MONTH DURING 2012^-2017\*

![](_page_13_Figure_3.jpeg)

![](_page_13_Figure_4.jpeg)

## **Guinea Worm Transmission Model**

- Agent-based model
- Environmental factors: temperature & rainfall → Worm burden in water → Rate of infection

![](_page_14_Figure_3.jpeg)

https://www.ajtmh.org/view/journals/tpmd/103/5/article-p1942.xml

Agent-Based Simulation for Seasonal Guinea Worm Disease in Chad Dogs

Journal of the American Society of Tyler Perini<sup>1</sup>, Pinar Keskinocak<sup>1</sup>, Zihao Li<sup>1</sup>, Ernesto Ruiz-Tiben<sup>2</sup>, Julie Swann<sup>1,3</sup>, and Adam Weiss<sup>2</sup>

![](_page_15_Figure_0.jpeg)

## Disease spread - Transmission

- Human-to-human
  - Respiratory diseases (e.g., flu, Covid-19), STDs
- Vector
  - Malaria, Guinea worm
- Vehicles
  - Cholera, typhoid fever, salmonella

## **Cholera Transmission**

- Oral-Fecal Pathway
  - Five F's: Feces, Fingers, Flies, Fields, Fluids, Food

![](_page_17_Figure_3.jpeg)

https://commons.wikimedia.org/wiki/File:F-diagram-01.jpg#/media/File:F-diagram-01.jpg

![](_page_18_Figure_0.jpeg)

## Cholera Worldwide

- 7 major pandemics in recorded history
- Many notable outbreaks since 1991. Examples:
  - 2008: Zimbabwe
  - 2010: Nigeria, Haiti, Dominican Republic
  - 2014: Ghana
- Cholera endemic in many places
- Overall, 1.4-4.3 million cases of cholera per year, leading to 28,000-142,000 deaths (WHO, 2014)

![](_page_18_Figure_9.jpeg)

![](_page_18_Figure_10.jpeg)

# Cholera Impact - Incidence (new cases) of disease and mortality differ by age

![](_page_19_Figure_1.jpeg)

## Environmental or other risk factors

![](_page_20_Figure_1.jpeg)

Piarroux et al (2009), The journal of field actions. (Democratic Republic of Congo)

# Resource allocation – Example: Oral cholera vaccine

![](_page_21_Figure_1.jpeg)

Incidence: A Mixed Integer Programming Model and Analysis of a Bangladesh Scenario," Vaccine, Vol.33, No.46, 6218–6223.

## **Our Contribution**

- Optimize OCV distribution policies to determine the best OCV allocation strategy to minimize cases or deaths:
  - Differentiate groups by age AND region, with varying risk levels
  - Consider fixed and varying vaccine efficacies based on age and years since vaccination
- Quantify cost-effectiveness of strategies
- J. Ahmed, P. K. Bardhan, W. Carter, L. Gonzalez, R. Hall, J. Heeger. L. Ivers, A. Khan, P. Keskinocak, H. Matzger, M. Mengel, D. Nazzal, C. Paradiso, F. Qadri, D. Sack, M. Villareal, S.A. Zahan (2013), "Comprehensive Integrated Strategy for Cholera Prevention and Control," Coalition for Cholera Prevention and Control, August. http://choleracoalition.org/resources/
- P. Keskinocak, D. Nazzal, M. Villarreal (2013), "Procurement and Logistics," Meeting of the Coalition for Cholera Prevention and Control, National Institutes of Health, Bethesda, MD, June 3-4.
- H.K. Smalley, P. Keskinocak, J. Swann, A. Hinman (2015), "Optimized Oral Cholera Vaccine Distribution Strategies to Minimize Disease Incidence: A Mixed Integer Programming Model and Analysis of a Bangladesh Scenario," *Vaccine*, Vol.33, No.46, 6218–6223.

## **Examples of Interventions**

- Pharmaceutical
  - Vaccines, antivirals
- Non-pharmaceutical
  - School closures, Travel restrictions, Physical distancing (e.g., voluntary quarantine), Age-based restrictions, ...
- Combined strategies: Testing, tracing, isolation
- Behaviors/Compliance (geographically, over time, subpopulations)
- How, where, when to allocate limited resources?

## **Infectious Disease Modeling**

Disease progression in an individual – Natural history

Environment Interventions Behaviors

## Disease spread

Metrics/outcomes of interest (by age group, geographically, subpopulation, etc.)

- New infections per time period, e.g., daily
- Timing and magnitude of the "peak"
- Total number of infections or % of population infected (IAR)
- Number or % hospitalized or dead
- Resource needs (e.g., hospital beds, ventilators)

![](_page_25_Picture_0.jpeg)

## COVID19 MODELING AND EVALUATING INTERVENTION STRATEGIES

### 

*Collaborators include:* John Asplund, Ph.D.; Emma Baubly; Arden Baxter; Saurabh Doodhwala; Akane Fujimoto; Daniel Kim; Dima Nazzal, Ph.D.; Buse Eylul Oruc; Pelin Pekgun, Ph.D., Lauren Steimle, Ph.D.; Tyler Perini; Josh Rosenblum; Erik Rosenstrom; Nicoleta Serban, Ph.D.; Melody Shellman; Chris Stone; Julie Swann, Ph.D.; Inci Yildirim, MD, Ph.D.; April Yu; Georgia Tech Institute for People and Technology; GA Department of Public Health *Funding:* "Integrated Systems Model to Inform State and Local Planning for the COVID-19 Pandemic," Council of State and Territorial Epidemiologists (CSTE); RADx Underserved Populations (RADx-UP) program

## Research insights

- Modeling the disease spread → Projections
- Evaluating the impact of interventions
  - School closures, Shelter-in-place, voluntaryquarantine
- Estimating resource needs
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Impact of testing/isolation depending on a compliance
- Vaccine allocation Benefits of serology testing 2
- Tradeoff between vaccine efficacy versus reach

| S    | C     | ENARI                                       | OS              | FOF               | R PF              | IYS            | ICAL                          | DIS                                 | T                                                     | ANCIN                                              | G                   |                   |               | Georgia<br>Tech<br>Georgia<br>Georgia<br>Tech | alth &<br>nanitariar<br>stems<br><sup>Jinary Research Center</sup><br>Jalth<br>1alytics<br>t School of Industrial |  |
|------|-------|---------------------------------------------|-----------------|-------------------|-------------------|----------------|-------------------------------|-------------------------------------|-------------------------------------------------------|----------------------------------------------------|---------------------|-------------------|---------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
|      | s     |                                             | Feb<br>18       | Feb<br>25         | Mar<br>3          | Mar<br>10      | Mar _<br>16                   | A                                   | Apr<br>3                                              |                                                    | Ма<br>1             | ay May<br>8       | May<br>15     | Sep<br>                                       | ngineering                                                                                                        |  |
| :    | eline | No Intervention                             |                 |                   |                   |                |                               |                                     |                                                       |                                                    |                     |                   |               |                                               |                                                                                                                   |  |
|      | Base  | School Clos                                 | ure             |                   |                   |                | Mar 16: S                     | chool Clo                           | sui                                                   | res                                                |                     |                   |               |                                               |                                                                                                                   |  |
|      |       |                                             | 30%<br>VQ       | 40%<br>VQ         | 50%<br>VQ         | 60% \          | /Q<br>Mar 16: S               | chool Clo                           | sui                                                   | res                                                |                     |                   |               |                                               |                                                                                                                   |  |
|      |       | Scenario 1                                  |                 |                   |                   | ,              |                               | SI                                  | P:                                                    | 4 weeks                                            | LOV<br>VSI          | V VQ              |               |                                               |                                                                                                                   |  |
|      |       | Scenario 2                                  | Vo              | luntar            | y Qua             | rantin         | e (VQ):                       | SI                                  | P:                                                    | 4 weeks MEDIUM VQ<br>VSIP                          |                     |                   |               |                                               |                                                                                                                   |  |
|      | s     | Scenario 3                                  | — All<br>ho     | house<br>me if t  | hold n<br>here is | nembe<br>a per | ers stay<br>son with          | SI                                  | P:                                                    | 4 weeks                                            | HIGH VQ<br>VSIP     |                   |               |                                               |                                                                                                                   |  |
| ;    | lion  | Scenario 4                                  | co              | ld/flu li         | ke syn            | nptoms         | s in the                      | SI                                  | SIP: 5 weeks                                          |                                                    |                     | LOW VO            | Q             |                                               |                                                                                                                   |  |
|      | irver | Scenario 5                                  | ho              | useho             | ld is sy          | mptor          | nure<br>n-free.               | SI                                  | P:                                                    | 5 weeks                                            |                     |                   | M VQ          |                                               |                                                                                                                   |  |
|      | Inte  | Scenario 6                                  |                 |                   |                   |                |                               | SI                                  | P: 5 weeks VSIP                                       |                                                    |                     | Q                 |               |                                               |                                                                                                                   |  |
|      |       | Scenario 7                                  |                 |                   |                   |                |                               | SI                                  | IP: 6 weeks                                           |                                                    |                     | _OW VQ<br>VSIP    |               |                                               |                                                                                                                   |  |
|      |       | Scenario 8                                  |                 |                   |                   |                |                               | SI                                  | SIP: 6 weeks                                          |                                                    |                     | MEDIUM<br>√SIP    | VQ            |                                               |                                                                                                                   |  |
|      |       | Scenario 9                                  |                 |                   |                   |                |                               | SI                                  | P:                                                    | 6 w                                                | veeks               |                   |               |                                               |                                                                                                                   |  |
|      |       | LOW VQ:<br>weekly de<br>at 20%              | 70% V<br>crease | /Q wit<br>e and s | n 20%<br>tabiliz  | e              | MEDIUN<br>5% wee<br>stabilize | <b>N VQ:</b> 8<br>kly dec<br>at 25% | <b>Q:</b> 80% VQ with decrease and 25% HIGH VQ at 30% |                                                    |                     |                   |               | % VQ with 3%<br>ase and stabilize             |                                                                                                                   |  |
| //// |       | Shelter In Place (SIP):<br>Start on April 3 |                 |                   |                   |                |                               |                                     |                                                       | <b>VSIP:</b> 60% V<br>to 40%, 20%<br>continue at 5 | /SIP<br>5, 5%<br>5% | and dec<br>weekly | rease<br>then |                                               | E NEXT°                                                                                                           |  |

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

"You may build all the ICUs you want. You may have all the ventilators you need. But you will not have the staff you need," del Rio said. "There simply are not enough ICU nurses or ICU doctors to take care of the patients."

## **Research questions**

- Modeling the disease spread
- Evaluating the impact of interventions
  - School closures & reopening, Shelter-in-place, voluntary-quarantine
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Impact of testing/isolation depending on compliance
- Vaccine allocation Benefits of serology testing
- Tradeoff between vaccine efficacy versus reach

## **Research questions**

- Modeling the disease spread
- Evaluating the impact of interventions
  - School closures & reopening, Shelter-in-place, voluntary-quarantine
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Vaccine allocation Benefits of serology testing?
- Tradeoff between vaccine efficacy versus reach
- Impact of testing/isolation depending compliance

# Health, society, economy, etc. – complex tradeoffs

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

## Research insights

- Modeling the disease spread  $\rightarrow$  Projections
- Evaluating the impact of interventions
  - School closures, Shelter-in-place, voluntaryquarantine
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Vaccine allocation Benefits of serology testing?

https://www.sciencedirect.com/science/article/pii/S0264410X21008288?via%3Dihub

![](_page_34_Figure_0.jpeg)

Vaccine, Volume 39, Issue 35, 16 August 2021, Pages 5055-5063 https://www.sciencedirect.com/science/article/pii/S0264410X21008288?via%3Dihub

|                                          | 1.2          |              |       |       |       |       |      |              |       |       |       |       |      |       |       |          |       |       |      |              |       |       |       |       |      |
|------------------------------------------|--------------|--------------|-------|-------|-------|-------|------|--------------|-------|-------|-------|-------|------|-------|-------|----------|-------|-------|------|--------------|-------|-------|-------|-------|------|
|                                          |              | 1.68 (Jun 2) |       |       |       |       |      | 1.46 (Aug 2) |       |       |       |       |      |       | 1.    | .35 (Oct | 1)    |       | ] [  | 1.27 (Dec 1) |       |       |       |       |      |
|                                          | None - 68.63 |              |       |       |       | 56.05 |      |              |       |       |       | 46.86 |      |       |       |          | 39.85 |       |      |              |       |       |       |       |      |
|                                          | Jan -        | 68.63        | 68.63 | 68.63 | 68.63 | 68.63 | (+7) | 56.04        | 56.04 | 56.04 | 56.04 | 56.04 | (+5) | 46.56 | 46.54 | 46.5     | 46.47 | 46.43 | (+3) | 36.7         | 36.55 | 36.38 | 36.21 | 36.03 | (+1) |
|                                          | Dec-         | 68.63        | 68.63 | 68.63 | 68.63 | 68.63 | (+6) | 56.02        | 56.02 | 56.01 | 56.01 | 56    | (+4) | 45.95 | 45.88 | 45.8     | 45.7  | 45.59 | (+2) | 33.1         | 32.87 | 32.64 | 32.37 | 32.12 | (0)  |
| cine Timing                              | Nov-         | 68.63        | 68.63 | 68.63 | 68.63 | 68.63 | (+5) | 55.94        | 55.92 | 55.91 | 55.89 | 55.86 | (+3) | 44.32 | 44.15 | 43.98    | 43.77 | 43.54 | (+1) | 27.53        | 27.28 | 27.02 | 26.75 | 26.46 | (-1) |
|                                          | Oct-         | 68.62        | 68.62 | 68.62 | 68.62 | 68.62 | (+4) | 55.59        | 55.54 | 55.48 | 55.39 | 55.29 | (+2) | 40.38 | 40.09 | 39.75    | 39.41 | 39.07 | (0)  | 20.1         | 19.87 | 19.7  | 19.53 | 19.32 | (-2) |
|                                          | Sep-         | 68.61        | 68.6  | 68.6  | 68.59 | 68.58 | (+3) | 54.31        | 54.15 | 53.94 | 53.71 | 53.44 | (+1) | 33.52 | 33.18 | 32.85    | 32.47 | 32.13 | (-1) | 12.67        | 12.64 | 12.48 | 12.36 | 12.28 | (-3) |
| /ac                                      | Aug-         | 68.49        | 68.47 | 68.44 | 68.39 | 68.32 | (+2) | 50.13        | 49.79 | 49.38 | 48.92 | 48.44 | (0)  | 24.03 | 23.73 | 23.45    | 23.24 | 22.97 | (-2) | 6.51         | 6.49  | 6.46  | 6.45  | 6.39  | (-4) |
| 1                                        | Jul -        | 67.72        | 67.59 | 67.42 | 67.18 | 66.86 | (+1) | 41.54        | 41.07 | 40.61 | 40.14 | 39.6  | (-1) | 13.96 | 13.82 | 13.61    | 13.51 | 13.46 | (-3) | 2.82         | 2.79  | 2.8   | 2.79  | 2.78  | (-5) |
|                                          | Jun -        | 63.83        | 63.44 | 62.95 | 62.36 | 61.71 | (0)  | 29.97        | 29.61 | 29.23 | 28.88 | 28.51 | (-2) | 6.25  | 6.22  | 6.23     | 6.14  | 6.14  | (-4) | 1.12         | 1.11  | 1.12  | 1.12  | 1.11  | (-6) |
|                                          | May-         | 54.03        | 53.5  | 52.89 | 52.26 | 51.53 | (-1) | 16.58        | 16.26 | 16.16 | 16.02 | 15.84 | (-3) | 2.13  | 2.1   | 2.11     | 2.1   | 2.1   | (-5) | 0.41         | 0.41  | 0.41  | 0.41  | 0.4   | (-7) |
|                                          |              | o            | 0.25  | 0.5   | 0.75  | 1     |      | 0            | 0.25  | 0.5   | 0.75  | 1     |      | 0     | 0.25  | 0.5      | 0.75  | 1     |      | 0            | 0.25  | 0.5   | 0.75  | 1     | -    |
| Probability of getting serology test (p) |              |              |       |       |       |       |      |              |       |       |       |       |      |       |       |          |       |       |      |              |       |       |       |       |      |
|                                          |              |              |       |       |       |       |      |              |       |       | IAR   | (%)   | 20   | 40    | 60    |          |       |       |      |              |       |       |       |       |      |

R0 (Baseline Peak Day)

**Figure 2:** *Infection attack rate* for the scenarios evaluated when the vaccine is available for 50% of the population and the vaccine efficacy is 90%.

- Highest IAR: High R0 and vaccination available after the peak.
- Impact of serology test highest when the vaccines are deployed close to the peak time

## Research insights

- Modeling the disease spread  $\rightarrow$  Projections
- Evaluating the impact of interventions
  - School closures, Shelter-in-place, voluntaryquarantine
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Vaccine allocation Benefits of serology testing?
- Impact of testing/isolation depending on compliance
- Tradeoff between vaccine efficacy versus reach

# Tradeoffs between vaccine efficacy and reach

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

> Vaccine. 2021 Oct 18;S0264-410X(21)01346-3. doi: 10.1016/j.vaccine.2021.10.025. Online ahead of print.

Resource allocation for different types of vaccines against COVID-19: Tradeoffs and synergies between efficacy and reach

Daniel Kim <sup>1</sup>, Pelin Pekgün <sup>2</sup>, İnci Yildirim <sup>3</sup>, Pınar Keskinocak <sup>4</sup>

## Research insights

- Modeling the disease spread  $\rightarrow$  Projections
- Evaluating the impact of interventions
  - School closures, Shelter-in-place, voluntaryquarantine
- Impact of interventions on society: "homebound days" versus reduction in disease spread
- Impact of testing/isolation depending on compliance
- Vaccine allocation Benefits of serology testing?
- Tradeoff between vaccine efficacy versus reach
- Dashboards

## Dashboards <a href="https://chhs.gatech.edu/covid19-dashboard">https://chhs.gatech.edu/covid19-dashboard</a>

Number of people vaccinated in subpopulation Total number of people in subpopulation x100

![](_page_39_Figure_2.jpeg)

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

![](_page_40_Picture_0.jpeg)